TY - JOUR
T1 - Preparation and Desalination of Semi-Aromatic Polyamide Reverse Osmosis Membranes (ROMs)
AU - Zhu, Haiyang
AU - Yuan, Bingbing
AU - Li, Yuchuan
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/4
Y1 - 2023/4
N2 - Reverse osmosis membrane (ROM) technology has a series of advantages, such as a simple process, no secondary pollution, high efficiency, energy saving, environmental protection, and good separation and purification effects. High-performance semi-aromatic polyamide reverse osmosis membranes (ROMs) were prepared by interfacial polymerization (IP) of novel cyclopentanecarbonyl chloride (CPTC) and m-phenylenediamine (MPD) monomers. The surface morphology, hydrophilicity and charge of the ROMs were characterized by field-emission scanning electron microscopy (SEM), a contact angle tester and a solid-surface zeta potential analyzer. The effects of CPTC concentration, MPD concentration, oil-phase solvent type, IP reaction time and additive concentration on the performance of semi-aromatic polyamide ROMs were studied. SEM morphology characterization showed that the surface of the prepared polyamide ROMs presented a multinodal structure. The performance test showed that when the concentration of MPD in the aqueous phase was 2.5 wt.%, the concentration of sodium dodecylbenzene sulfonate (SDBS) was 0.2%, the residence time in the aqueous phase was 2 min, the concentration of CPTC/cyclohexane in the oil phase was 0.13 wt.%, the IP reaction was 20 s, the NaCl rejection rate of the semi-aromatic polyamide ROM was 98.28% and the flux was 65.38 L/m2·h, showing good desalination performance. Compared with an NF 90 commercial membrane, it has a good anti-BSA pollution ability.
AB - Reverse osmosis membrane (ROM) technology has a series of advantages, such as a simple process, no secondary pollution, high efficiency, energy saving, environmental protection, and good separation and purification effects. High-performance semi-aromatic polyamide reverse osmosis membranes (ROMs) were prepared by interfacial polymerization (IP) of novel cyclopentanecarbonyl chloride (CPTC) and m-phenylenediamine (MPD) monomers. The surface morphology, hydrophilicity and charge of the ROMs were characterized by field-emission scanning electron microscopy (SEM), a contact angle tester and a solid-surface zeta potential analyzer. The effects of CPTC concentration, MPD concentration, oil-phase solvent type, IP reaction time and additive concentration on the performance of semi-aromatic polyamide ROMs were studied. SEM morphology characterization showed that the surface of the prepared polyamide ROMs presented a multinodal structure. The performance test showed that when the concentration of MPD in the aqueous phase was 2.5 wt.%, the concentration of sodium dodecylbenzene sulfonate (SDBS) was 0.2%, the residence time in the aqueous phase was 2 min, the concentration of CPTC/cyclohexane in the oil phase was 0.13 wt.%, the IP reaction was 20 s, the NaCl rejection rate of the semi-aromatic polyamide ROM was 98.28% and the flux was 65.38 L/m2·h, showing good desalination performance. Compared with an NF 90 commercial membrane, it has a good anti-BSA pollution ability.
KW - cyclopentanecarbonyl chloride (CPTC)
KW - desalination
KW - preparation
KW - reverse osmosis membrane (ROM)
KW - semi-aromatic
UR - http://www.scopus.com/inward/record.url?scp=85152858443&partnerID=8YFLogxK
U2 - 10.3390/polym15071683
DO - 10.3390/polym15071683
M3 - Article
AN - SCOPUS:85152858443
SN - 2073-4360
VL - 15
JO - Polymers
JF - Polymers
IS - 7
M1 - 1683
ER -