Prediction of residual burst strength for composite pressure vessels after low velocity impact

Binbin Liao, Yang Du*, Jinyang Zheng, Dongliang Wang, Yuan Lin, Ran Tao, Chilou Zhou

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Composite pressure vessels have been widely used for high-pressure hydrogen storage. This paper aims to study the residual burst strength of composite pressure vessels after low velocity impact. An explicit-implicit combined model using strain-based three-dimensional failure theory is employed for numerical analysis, which is implemented by ABAQUS user-defined subroutines VUAMT, UMAT and ABAQUS-Python scripting language. Impacted-induced damage including the intralaminar fiber and matrix damage, and interface delamination is directly imported to the residual strength analysis to explore the whole-process damage mechanisms by using current model. For composite pressure vessels, the mechanical responses and damage behaviors of intralaminar damage and interface delamination at six impact energy are explored. After impact, the damage evolution under internal pressure for vessels is discussed. By comparison, the numerical results are basically consistent with experimental results. Besides, the effects of impact direction of strip impactor and liner type on the low velocity impact responses and residual burst strength are explored. By studying the influence of impact energy, liner type and impact direction systematically, it shows that fiber damage on the hoop layers caused by impact load can reduce the residual burst strength for current composite pressure vessels.

Original languageEnglish
Pages (from-to)10962-10976
Number of pages15
JournalInternational Journal of Hydrogen Energy
Volume45
Issue number18
DOIs
Publication statusPublished - 1 Apr 2020

Keywords

  • Composite pressure vessels
  • Explicit-implicit combined model
  • Residual burst strength
  • Whole-process damage mechanisms

Fingerprint

Dive into the research topics of 'Prediction of residual burst strength for composite pressure vessels after low velocity impact'. Together they form a unique fingerprint.

Cite this