Abstract
Herein, hierarchical porous carbon derived from polyethylene waste (plastic bags etc.) has been synthesized by ball-milling and carbonization with a flame-retardant agent, basic magnesium carbonate pentahydrate (MCHP:4MgCO3·Mg(OH)2·5H2O). The presence of MCHP not only provides in-situ MgO template during pyrolysis, but also greatly enhances the thermal stability of polyethylene for carbonization. After subsequent NH3 activation, the polyethylene waste derived carbon (PE-HPC-900NH3) shows a high surface area and a unique property of meso-porosity, which contribute to the excellent capacitive performance. Remarkably, the obtained PE-HPC-900NH3 electrode displays a relatively high specific capacitance with excellent cycling stability (about 97.1% of capacitance retention after 10,000 cycles at 2 A g−1). A high energy density of 43 Wh kg−1 can be achieved for the PE-HPC-900NH3 symmetrical supercapacitor at an extremely wide voltage of 4 V in EMIMBF4 due to the high purity and low ratio of O/N. This work provides a promising approach to disposal of waste plastics and opens new applications in various energy fields.
Original language | English |
---|---|
Pages (from-to) | 313-320 |
Number of pages | 8 |
Journal | Chemical Engineering Journal |
Volume | 366 |
DOIs | |
Publication status | Published - 15 Jun 2019 |
Keywords
- Basic magnesium carbonate pentahydrate
- Carbon
- High efficient supercapacitor
- Mesoporous network
- Polyethylene waste