TY - JOUR
T1 - Plasma-assisted synthesis of ultra-fine NiCo2O4/NiCo-layered double hydroxides nanoparticles-decorated electrospun carbon nanofibers with enhanced electrochemical performance
AU - Ding, Peng
AU - Li, Maoyuan
AU - Chen, Weiwei
AU - Kimura, Hideo
AU - Xie, Xiubo
AU - Hou, Chuanxin
AU - Sun, Xueqin
AU - Yang, Xiao Yang
AU - Jiang, Huiyu
AU - Du, Wei
AU - Zhang, Yuping
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/12/15
Y1 - 2024/12/15
N2 - Nickel cobaltate/NiCo-layered double hydroxides (NiCo2O4/NiCo-LDH) as energy storage materials offer considerable potential for various applications. However, many of current methods for synthesizing NiCo2O4/NiCo-LDH suffer from long synthesis times, complex preparation process, and high temperatures and high pressures. In this study, we present a green, simple, and efficient approach known as assisted liquid-phase plasma electrolysis, which realizes the rapid fabrication of ultra-fine NiCo2O4/NiCo-LDH nanoparticle-decorated electrospun carbon nanofibers (NiCo2O4/NiCo-LDH/CNFs) composites. Ultra-fine NiCo2O4/NiCo-LDH nanoparticles (<70 nm) are uniformly deposited on the CNF surface. The CNFs are intertwined to form a highly conductive three-dimensional mesh structure, which synergizes the NiCo2O4/NiCo-LDH nanoparticles with a high specific capacitance in favor of ion/electron transport efficiency. In addition, the cooperative effect between the two phases of NiCo2O4 and NiCo-LDH further improves the electrochemical properties. The NiCo2O4/NiCo-LDH/CNFs composites exhibit a high specific capacitance of 1534.7 F/g at 1 A/g and a capacitance retention of 93.9 % after 5000 cycles. An assembled asymmetric supercapacitor using activated carbon and NiCo2O4/NiCo-LDH/CNFs composites achieves an energy density of 33.8 Wh/kg at a power density of 400 W/kg and a capacitance retention of 93.0 % after 5000 cycles. Notably, two series-connected NiCo2O4/NiCo-LDH/CNFs ASC supercapacitors can light up an LED bulb, which maintains a certain brightness even after 50 min. Hence, this work provides a new and efficient route for synthesizing carbon-based NiCo2O4/NiCo-LDH composites for use as advanced energy storage materials.
AB - Nickel cobaltate/NiCo-layered double hydroxides (NiCo2O4/NiCo-LDH) as energy storage materials offer considerable potential for various applications. However, many of current methods for synthesizing NiCo2O4/NiCo-LDH suffer from long synthesis times, complex preparation process, and high temperatures and high pressures. In this study, we present a green, simple, and efficient approach known as assisted liquid-phase plasma electrolysis, which realizes the rapid fabrication of ultra-fine NiCo2O4/NiCo-LDH nanoparticle-decorated electrospun carbon nanofibers (NiCo2O4/NiCo-LDH/CNFs) composites. Ultra-fine NiCo2O4/NiCo-LDH nanoparticles (<70 nm) are uniformly deposited on the CNF surface. The CNFs are intertwined to form a highly conductive three-dimensional mesh structure, which synergizes the NiCo2O4/NiCo-LDH nanoparticles with a high specific capacitance in favor of ion/electron transport efficiency. In addition, the cooperative effect between the two phases of NiCo2O4 and NiCo-LDH further improves the electrochemical properties. The NiCo2O4/NiCo-LDH/CNFs composites exhibit a high specific capacitance of 1534.7 F/g at 1 A/g and a capacitance retention of 93.9 % after 5000 cycles. An assembled asymmetric supercapacitor using activated carbon and NiCo2O4/NiCo-LDH/CNFs composites achieves an energy density of 33.8 Wh/kg at a power density of 400 W/kg and a capacitance retention of 93.0 % after 5000 cycles. Notably, two series-connected NiCo2O4/NiCo-LDH/CNFs ASC supercapacitors can light up an LED bulb, which maintains a certain brightness even after 50 min. Hence, this work provides a new and efficient route for synthesizing carbon-based NiCo2O4/NiCo-LDH composites for use as advanced energy storage materials.
KW - Assisted liquid-phase plasma electrolysis
KW - Asymmetric supercapacitors
KW - Deposition dynamics
KW - Efficient synthesis method
KW - NiCoO/NiCo-LDH/CNFs
UR - http://www.scopus.com/inward/record.url?scp=85199479288&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2024.07.174
DO - 10.1016/j.jcis.2024.07.174
M3 - Article
AN - SCOPUS:85199479288
SN - 0021-9797
VL - 676
SP - 826
EP - 836
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
ER -