Piezoelectric Energy Harvesting from the Thorax Vibration of Freely Flying Bees

Zhiyun Ma, Jieliang Zhao*, Li Yu, Lulu Liang, Zhong Liu, Yongxia Gu, Jianing Wu*, Wenzhong Wang*, Shaoze Yan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Insect cyborgs have been proposed for application in future rescue operations, environmental monitoring, and hazardous area surveys. An energy harvester for insect carrying is critical to the long-lasting life of insect cyborgs, and designing an energy harvester with superior energy output within the load capacity of tiny flying insects is very important. In this study, we measured the thorax vibration frequency of bees during loaded flight conditions. We propose a piezoelectric vibration energy harvester for bees that has a mass of only 46 mg and can achieve maximum effective output voltage and energy density of 5.66 V and 1.27 mW/cm3, respectively. The harvester has no marked effect on the bees’ normal movement, which is verified by experiments of mounting the harvester on bees. These results indicate that the proposed harvester is expected to realize a self-power supply of tiny insect cyborgs.

Original languageEnglish
Article number0210
JournalCyborg and Bionic Systems
Volume6
DOIs
Publication statusPublished - 2025

Fingerprint

Dive into the research topics of 'Piezoelectric Energy Harvesting from the Thorax Vibration of Freely Flying Bees'. Together they form a unique fingerprint.

Cite this