Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes

Hongbing Ding, Yuanyuan Dong, Yan Yang*, Chuang Wen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The use of ejectors in transcritical CO2 refrigeration systems is of key significance for improving system performance, and the investigation of ejectors is particularly important. In this paper, a CO2 two-phase numerical model considering non-equilibrium phase change is established to investigate the two-phase flow characteristics and entrainment performance in the ejector under different operating conditions. In particular, this study is devoted to the trade-off analysis of internal mass transfer and energy utilization efficiency. After a series of tests, the accuracy of the numerical model has been validated, and with the increase of primary inlet pressure, the entrainment performance first increases and then decreases, while the entrainment performance is greatly improved with the increase of primary temperature. There is a critical back pressure, beyond which the entrainment performance drops rapidly. If the pressure reaches 8.46 MPa and the corresponding temperature is set at 303.7 K, the efficiency of the ejector is 27%. When the temperature rises to 313 K, the efficiency increases to 31%, and the ratio of exergy destruction decreases from 48.3% to 10.2%. However, when the back pressure drops to 4.0 MPa, the working efficiency is only 1.8%, which fails to work normally. Effectively balancing the inlet conditions with energy utilization is a key strategy for optimizing ejector use.

Original languageEnglish
Article number123810
JournalApplied Energy
Volume372
DOIs
Publication statusPublished - 15 Oct 2024
Externally publishedYes

Keywords

  • Energy loss
  • Entrainment performance
  • Phase change
  • Transcritical CO ejector
  • Two-phase flow
  • refrigeration

Fingerprint

Dive into the research topics of 'Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes'. Together they form a unique fingerprint.

Cite this