TY - JOUR
T1 - Parallel Vertex Diffusion for Unified Visual Grounding
AU - Cheng, Zesen
AU - Li, Kehan
AU - Jin, Peng
AU - Li, Siheng
AU - Ji, Xiangyang
AU - Yuan, Li
AU - Liu, Chang
AU - Chen, Jie
N1 - Publisher Copyright:
© 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Unified visual grounding (UVG) capitalizes on a wealth of task-related knowledge across various grounding tasks via one-shot training, which curtails retraining costs and task-specific architecture design efforts. Vertex generation-based UVG methods achieve this versatility by unified modeling object box and contour prediction and provide a text-powered interface to vast related multi-modal tasks, e.g., visual question answering, and captioning. However, these methods typically generate vertexes sequentially through autoregression, which is prone to be trapped in error accumulation and heavy computation, especially for high-dimension sequence generation in complex scenarios. In this paper, we develop Parallel Vertex Diffusion (PVD) based on the parallelizability of diffusion models to accurately and efficiently generate vertexes in a parallel and scalable manner. Since the coordinates fluctuate greatly, it typically encounters slow convergence when training diffusion models without geometry constraints. Therefore, we consummate our PVD by two critical components, i.e., center anchor mechanism and angle summation loss, which serve to normalize coordinates and adopt a differentiable geometry descriptor from the point-in-polygon problem of computational geometry to constrain the overall difference of prediction and label vertexes. These innovative designs empower our PVD to demonstrate its superiority with state-of-the-art performance across various grounding tasks.
AB - Unified visual grounding (UVG) capitalizes on a wealth of task-related knowledge across various grounding tasks via one-shot training, which curtails retraining costs and task-specific architecture design efforts. Vertex generation-based UVG methods achieve this versatility by unified modeling object box and contour prediction and provide a text-powered interface to vast related multi-modal tasks, e.g., visual question answering, and captioning. However, these methods typically generate vertexes sequentially through autoregression, which is prone to be trapped in error accumulation and heavy computation, especially for high-dimension sequence generation in complex scenarios. In this paper, we develop Parallel Vertex Diffusion (PVD) based on the parallelizability of diffusion models to accurately and efficiently generate vertexes in a parallel and scalable manner. Since the coordinates fluctuate greatly, it typically encounters slow convergence when training diffusion models without geometry constraints. Therefore, we consummate our PVD by two critical components, i.e., center anchor mechanism and angle summation loss, which serve to normalize coordinates and adopt a differentiable geometry descriptor from the point-in-polygon problem of computational geometry to constrain the overall difference of prediction and label vertexes. These innovative designs empower our PVD to demonstrate its superiority with state-of-the-art performance across various grounding tasks.
UR - https://www.scopus.com/pages/publications/85189533650
U2 - 10.1609/aaai.v38i2.27896
DO - 10.1609/aaai.v38i2.27896
M3 - Conference article
AN - SCOPUS:85189533650
SN - 2159-5399
VL - 38
SP - 1326
EP - 1334
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 2
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -