Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms

Xiu Ji, Tongzhu Li, Huafei Sun

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Let x : Mn → M1n+1(c) be an umbilic-free spacelike hypersurface in the (n+ 1)-dimensional Lorentzian space form M1n+1(c). Three basic conformal invariants of Mn are the conformal 1-form C, the conformal second fundamental form B, and the Blaschke tensor A. The para-Blaschke tensor Dλ = A + λB which is a linear combination of A and B for some constant λ is a symmetric (0, 2)-tensor. A spacelike hypersurface is called a para-Blaschke isoparametric spacelike hypersurface if the conformal 1-form vanishes and the eigenvalues of the para-Blaschke tensor are constant. In this paper, we classify the para-Blaschke isoparametric spacelike hypersurfaces under the conformal group of M1n+1(c).

Original languageEnglish
Pages (from-to)685-706
Number of pages22
JournalHouston Journal of Mathematics
Volume45
Issue number3
Publication statusPublished - 2019

Keywords

  • Blaschke tensor
  • Conformal invariant
  • Conformal isoparametric spacelike hypersurface
  • Para-Blaschke isoparametric spacelike hypersurface

Fingerprint

Dive into the research topics of 'Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms'. Together they form a unique fingerprint.

Cite this