Abstract
Let x : Mn → M1n+1(c) be an umbilic-free spacelike hypersurface in the (n+ 1)-dimensional Lorentzian space form M1n+1(c). Three basic conformal invariants of Mn are the conformal 1-form C, the conformal second fundamental form B, and the Blaschke tensor A. The para-Blaschke tensor Dλ = A + λB which is a linear combination of A and B for some constant λ is a symmetric (0, 2)-tensor. A spacelike hypersurface is called a para-Blaschke isoparametric spacelike hypersurface if the conformal 1-form vanishes and the eigenvalues of the para-Blaschke tensor are constant. In this paper, we classify the para-Blaschke isoparametric spacelike hypersurfaces under the conformal group of M1n+1(c).
Original language | English |
---|---|
Pages (from-to) | 685-706 |
Number of pages | 22 |
Journal | Houston Journal of Mathematics |
Volume | 45 |
Issue number | 3 |
Publication status | Published - 2019 |
Keywords
- Blaschke tensor
- Conformal invariant
- Conformal isoparametric spacelike hypersurface
- Para-Blaschke isoparametric spacelike hypersurface