Optimal Tracking Control for Robotic Manipulator using Actor-Critic Network

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

This paper proposed an optimal control scheme based on the actor-critic neural network(NN) for the complex mechanical manipulator system with dynamic disturbance. The actor's goal is to optimize control behavior, while the critic's goal is to evaluate control performance. The optimal control update law in the scheme can guarantee the system error and the weight estimation error SGUUB, and its stability and convergence are proved based on the direct Lyapunov method. Finally, the connecting rods on two degrees of freedom are tested to verify the effectiveness of the proposed optimal control scheme.

Original languageEnglish
Title of host publicationProceedings of the 40th Chinese Control Conference, CCC 2021
EditorsChen Peng, Jian Sun
PublisherIEEE Computer Society
Pages1556-1561
Number of pages6
ISBN (Electronic)9789881563804
DOIs
Publication statusPublished - 26 Jul 2021
Event40th Chinese Control Conference, CCC 2021 - Shanghai, China
Duration: 26 Jul 202128 Jul 2021

Publication series

NameChinese Control Conference, CCC
Volume2021-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference40th Chinese Control Conference, CCC 2021
Country/TerritoryChina
CityShanghai
Period26/07/2128/07/21

Keywords

  • Optimized tracking control
  • actor-critic
  • adaptive dynamic programming
  • neural network (NN)

Fingerprint

Dive into the research topics of 'Optimal Tracking Control for Robotic Manipulator using Actor-Critic Network'. Together they form a unique fingerprint.

Cite this