Online continuous-time tensor factorization based on pairwise interactive point processes

Hongteng Xu, Dixin Luo, Lawrence Carin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

A continuous-time tensor factorization method is developed for event sequences containing multiple “modalities.” Each data element is a point in a tensor, whose dimensions are associated with the discrete alphabet of the modalities. Each tensor data element has an associated time of occurence and a feature vector. We model such data based on pairwise interactive point processes, and the proposed framework connects pairwise tensor factorization with a feature-embedded point process. The model accounts for interactions within each modality, interactions across different modalities, and continuous-time dynamics of the interactions. Model learning is formulated as a convex optimization problem, based on online alternating direction method of multipliers. Compared to existing state-of-the-art methods, our approach captures the latent structure of the tensor and its evolution over time, obtaining superior results on real-world datasets.

Original languageEnglish
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2905-2911
Number of pages7
ISBN (Electronic)9780999241127
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: 13 Jul 201819 Jul 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Conference

Conference27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period13/07/1819/07/18

Fingerprint

Dive into the research topics of 'Online continuous-time tensor factorization based on pairwise interactive point processes'. Together they form a unique fingerprint.

Cite this