Object-Aware NIR-to-Visible Translation

Yunyi Gao, Lin Gu, Qiankun Liu, Ying Fu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

While near-infrared (NIR) imaging is essential for assisted driving and safety monitoring systems, its monochromatic nature hinders its broader application, which prompts the development of NIR-to-visible translation tasks. However, the performance of existing translation methods is limited by the neglected disparities between NIR and visible imaging and the lack of paired training data. To address these challenges, we propose a novel object-aware framework for NIR-to-visible translation. Our approach decomposes the visible image recovery into object-independent luminance sources and object-specific reflective components, processing them separately to bridge the gap between NIR and visible imaging under various lighting conditions. Leveraging prior segmentation knowledge enhances our model’s ability to identify and understand the separated object reflection. We also collect the Fully Aligned NIR-Visible Image Dataset, a large-scale dataset comprising fully matched pairs of NIR and visible images captured with a multi-sensor coaxial camera. Empirical evaluations demonstrate our method’s superiority over existing methods, producing visually compelling results on mainstream datasets. Code is accessible at: https://github.com/Yiiclass/Sherry.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages93-109
Number of pages17
ISBN (Print)9783031733369
DOIs
Publication statusPublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sept 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15081 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Keywords

  • Color Recovery
  • NIR-to-Visible
  • Object-Aware Method

Cite this