TY - JOUR
T1 - NoiseGPT
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
AU - Wang, Haoyu
AU - Huang, Zhuo
AU - Lin, Zhiwei
AU - Liu, Tongliang
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Machine learning craves high-quality data which is a major bottleneck during realistic deployment, as it takes abundant resources and massive human labor to collect and label data. Unfortunately, label noise where image data mismatches with incorrect label exists ubiquitously in all kinds of datasets, significantly degrading the learning performance of deep networks. Learning with Label Noise (LNL) has been a common strategy for mitigating the influence of noisy labels. However, existing LNL methods either require pertaining using the memorization effect to separate clean data from noisy ones or rely on dataset assumptions that cannot extend to various scenarios. Thanks to the development of Multimodal Large Language Models (MLLMs) which possess massive knowledge and hold In-Context Learning (ICL) ability, this paper proposes NoiseGPT to effectively leverage MLLMs as a knowledge expert for conducting label noise detection and rectification. Specifically, we observe a probability curvature effect of MLLMs where clean and noisy examples reside on curvatures with different smoothness, further enabling the detection of label noise. By designing a token-wise Mix-of-Feature (MoF) technique to produce the curvature, we propose an In-Context Discrepancy (ICD) measure to determine the authenticity of an image-label pair. Subsequently, we repeat such a process to find the best matching pairs to complete our label rectification. Through extensive experiments, we carefully demonstrate the effectiveness of NoiseGPT on detecting and cleansing dataset noise, especially on ILSVRC12, the AUROC of NoiseGPT reached over 0.92. And by integrating with existing methods, the classification performance can be significantly improved on noisy datasets, typically by 22.8% on 80% symmetric CIFAR-10 with M-correction. Source code: https://github.com/drunkerWang/NoiseGPT.
AB - Machine learning craves high-quality data which is a major bottleneck during realistic deployment, as it takes abundant resources and massive human labor to collect and label data. Unfortunately, label noise where image data mismatches with incorrect label exists ubiquitously in all kinds of datasets, significantly degrading the learning performance of deep networks. Learning with Label Noise (LNL) has been a common strategy for mitigating the influence of noisy labels. However, existing LNL methods either require pertaining using the memorization effect to separate clean data from noisy ones or rely on dataset assumptions that cannot extend to various scenarios. Thanks to the development of Multimodal Large Language Models (MLLMs) which possess massive knowledge and hold In-Context Learning (ICL) ability, this paper proposes NoiseGPT to effectively leverage MLLMs as a knowledge expert for conducting label noise detection and rectification. Specifically, we observe a probability curvature effect of MLLMs where clean and noisy examples reside on curvatures with different smoothness, further enabling the detection of label noise. By designing a token-wise Mix-of-Feature (MoF) technique to produce the curvature, we propose an In-Context Discrepancy (ICD) measure to determine the authenticity of an image-label pair. Subsequently, we repeat such a process to find the best matching pairs to complete our label rectification. Through extensive experiments, we carefully demonstrate the effectiveness of NoiseGPT on detecting and cleansing dataset noise, especially on ILSVRC12, the AUROC of NoiseGPT reached over 0.92. And by integrating with existing methods, the classification performance can be significantly improved on noisy datasets, typically by 22.8% on 80% symmetric CIFAR-10 with M-correction. Source code: https://github.com/drunkerWang/NoiseGPT.
UR - http://www.scopus.com/inward/record.url?scp=105000799176&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000799176
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
Y2 - 9 December 2024 through 15 December 2024
ER -