Multisource Remote Sensing Data Classification Using Deep Hierarchical Random Walk Networks

Xudong Zhao, Ran Tao, Wei Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Collaborative classification of hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data is investigated using effective hierarchical random walk networks, denoted as HRWN. The proposed HRWN jointly optimizes dual-tunnel CNN, pixelwise affinity and seeds map via a novel random walk layer, which enforces spatial consistency in the deepest layers of the network. In designed random walk layer, the predicted distribution of dual-tunnel CNN serves as global prior while pixelwise affinity reflects local similarity of pixel pairs, which preserves boundary localization and spatial consistency well. Experimental results validated with two real multisource remote sensing data demonstrate that the proposed HRWN can significantly outperform other state-of-art methods.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2187-2191
Number of pages5
ISBN (Electronic)9781479981311
DOIs
Publication statusPublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • Hierarchical random walk
  • convolutional neural network (CNN)
  • hyperspectral image (HSI)
  • multi-source remote sensing classification.

Fingerprint

Dive into the research topics of 'Multisource Remote Sensing Data Classification Using Deep Hierarchical Random Walk Networks'. Together they form a unique fingerprint.

Cite this