Multi-functional interface sensor with targeted IFSS enhancing, interface monitoring and self-healing of GF/EVA thermoplastic composites

Bin Yang, Fu Zhen Xuan*, Zhenqing Wang, Liming Chen, Hongshuai Lei, Wenyan Liang, Yanxun Xiang, Kang Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Developing the fiber/matrix interface with combined structural and functional performances is of tremendous importance in ensuring the service safety of fiber reinforced plastic composites (FRPs) and expanding the capabilities of FRPs to perform multiple parallel tasks. Herein, a multi-functional interface sensor that can improve the interfacial shear strength, and simultaneously monitor and heal the interfacial damage between glass fiber yarn and thermoplastic ethylene-vinyl acetate copolymer resin (GF/EVA) is reported. The basic idea is introducing multi-walled carbon nanotube into GF/EVA interface. By this proposed method, the interfacial shear strength (IFSS) of GF/EVA composites is enhanced by 48.9%. The resistance of the interface sensor is recorded during the pull-out tests, and results show that the relative resistivity change could reflect the interfacial damage information very well. Electric heating of the sensor is adopted to heal the interfacial damage. The applied electrical power is discussed to evaluate the self-healing efficiency of the interfaces at different damage degrees. Successful interfacial self-healing ability is achieved and confirmed using different characterization techniques. Moreover, to verify the feasibility of our method in GF/EVA composite laminates, in-situ monitoring of the laminates under complicated stress and healing of delamination are performed. The results show that the developed sensor could monitor and heal the GF/EVA composite laminates with high sensing/healing ability. The proposed method and the obtained results could help to get a multi-functional sensor to ensure the service safety of composite structures.

Original languageEnglish
Pages (from-to)86-95
Number of pages10
JournalComposites Science and Technology
Volume167
DOIs
Publication statusPublished - 20 Oct 2018

Keywords

  • A. Glass fibers
  • B. Interfacial strength
  • D. Non-destructive testing

Fingerprint

Dive into the research topics of 'Multi-functional interface sensor with targeted IFSS enhancing, interface monitoring and self-healing of GF/EVA thermoplastic composites'. Together they form a unique fingerprint.

Cite this