Modality Synergy Complement Learning with Cascaded Aggregation for Visible-Infrared Person Re-Identification

Yiyuan Zhang, Sanyuan Zhao*, Yuhao Kang, Jianbing Shen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

51 Citations (Scopus)

Abstract

Visible-Infrared Re-Identification (VI-ReID) is challenging in image retrievals. The modality discrepancy will easily make huge intra-class variations. Most existing methods either bridge different modalities through modality-invariance or generate the intermediate modality for better performance. Differently, this paper proposes a novel framework, named Modality Synergy Complement Learning Network (MSCLNet) with Cascaded Aggregation. Its basic idea is to synergize two modalities to construct diverse representations of identity-discriminative semantics and less noise. Then, we complement synergistic representations under the advantages of the two modalities. Furthermore, we propose the Cascaded Aggregation strategy for fine-grained optimization of the feature distribution, which progressively aggregates feature embeddings from the subclass, intra-class, and inter-class. Extensive experiments on SYSU-MM01 and RegDB datasets show that MSCLNet outperforms the state-of-the-art by a large margin. On the large-scale SYSU-MM01 dataset, our model can achieve 76.99% and 71.64% in terms of Rank-1 accuracy and mAP value. Our code will be available at https://github.com/bitreidgroup/VI-ReID-MSCLNet.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages462-479
Number of pages18
ISBN (Print)9783031197802
DOIs
Publication statusPublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13674 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Keywords

  • Cascaded Aggregation
  • Modality Synergy
  • VI-ReID

Fingerprint

Dive into the research topics of 'Modality Synergy Complement Learning with Cascaded Aggregation for Visible-Infrared Person Re-Identification'. Together they form a unique fingerprint.

Cite this