MLP Embedded Inverse Tone Mapping

Panjun Liu, Jiacheng Li, Lizhi Wang, Zheng Jun Zha, Zhiwei Xiong*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The advent of High Dynamic Range/Wide Color Gamut (HDR/WCG) display technology has made significant progress in providing exceptional richness and vibrancy for the human visual experience. However, the widespread adoption of HDR/WCG images is hindered by their substantial storage requirements, imposing significant bandwidth challenges during distribution. Besides, HDR/WCG images are often tone-mapped into Standard Dynamic Range (SDR) versions for compatibility, necessitating the usage of inverse Tone Mapping (iTM) techniques to reconstruct their original representation. In this work, we propose a meta-transfer learning framework for practical HDR/WCG media transmission by embedding image-wise metadata into their SDR counterparts for later iTM reconstruction. Specifically, we devise a meta-learning strategy to pre-train a lightweight multilayer perceptron (MLP) model that maps SDR pixels to HDR/WCG ones on an external dataset, resulting in a domain-wise iTM model. Subsequently, for the transfer learning process of each HDR/WCG image, we present a spatial-aware online mining mechanism to select challenging training pairs to adapt the meta-trained model to an image-wise iTM model. Finally, the adapted MLP, embedded as metadata, is transmitted alongside the SDR image, facilitating the reconstruction of the original image on HDR/WCG displays. We conduct extensive experiments and evaluate the proposed framework with diverse metrics. Compared with existing solutions, our framework shows superior performance in fidelity, minimal latency, and negligible overhead. The codes are available at https://github.com/pjliu3/MLP-iTM.

Original languageEnglish
Title of host publicationMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages1283-1291
Number of pages9
ISBN (Electronic)9798400706868
DOIs
Publication statusPublished - 28 Oct 2024
Event32nd ACM International Conference on Multimedia, MM 2024 - Melbourne, Australia
Duration: 28 Oct 20241 Nov 2024

Publication series

NameMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia

Conference

Conference32nd ACM International Conference on Multimedia, MM 2024
Country/TerritoryAustralia
CityMelbourne
Period28/10/241/11/24

Keywords

  • high dynamic range
  • inverse tone mapping
  • wide color gamut

Fingerprint

Dive into the research topics of 'MLP Embedded Inverse Tone Mapping'. Together they form a unique fingerprint.

Cite this