MKSNet: Advanced Small Object Detection in Remote Sensing Imagery with Multi-Kernel and Dual Attention Mechanisms

Jiahao Zhang, Xiao Zhao, Guangyu Gao*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Deep convolutional neural networks (DCNNs) have substantially advanced object detection capabilities, particularly in remote sensing imagery. However, challenges persist, especially in detecting small objects where the high resolution of these images and the small size of target objects often result in a loss of critical information in the deeper layers of conventional CNNs. Additionally, the extensive spatial redundancy and intricate background details typical in remote-sensing images tend to obscure these small targets. To address these challenges, we introduce Multi-Kernel Selection Network (MKSNet), a novel network architecture featuring a novel Multi-Kernel Selection mechanism. The MKS mechanism utilizes large convolutional kernels to capture an extensive range of contextual information effectively. This innovative design allows for adaptive kernel size selection, significantly enhancing the network’s ability to dynamically process and emphasize crucial spatial details for small object detection. Furthermore, MKSNet also incorporates a dual attention mechanism, merging spatial and channel attention modules. The spatial attention module adaptively fine-tunes the spatial weights of feature maps, focusing more intensively on relevant regions while mitigating background noise. Simultaneously, the channel attention module optimizes channel information selection, improving feature representation and detection accuracy. Empirical evaluations on the DOTA-v1.0 and HRSC2016 benchmark demonstrate that MKSNet substantially surpasses existing state-of-the-art models in detecting small objects in remote sensing images. These results highlight MKSNet’s superior ability to manage the complexities associated with multi-scale and high-resolution image data, confirming its effectiveness and innovation in remote sensing object detection.

Original languageEnglish
Title of host publicationMultiMedia Modeling - 31st International Conference on Multimedia Modeling, MMM 2025, Proceedings
EditorsIchiro Ide, Ioannis Kompatsiaris, Changsheng Xu, Keiji Yanai, Wei-Ta Chu, Naoko Nitta, Michael Riegler, Toshihiko Yamasaki
PublisherSpringer Science and Business Media Deutschland GmbH
Pages394-407
Number of pages14
ISBN (Print)9789819620609
DOIs
Publication statusPublished - 2025
Event31st International Conference on Multimedia Modeling, MMM 2025 - Nara, Japan
Duration: 8 Jan 202510 Jan 2025

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15521 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference31st International Conference on Multimedia Modeling, MMM 2025
Country/TerritoryJapan
CityNara
Period8/01/2510/01/25

Keywords

  • Channel Attention
  • Multi-Kernel Selection
  • Remote Sensing Images
  • Small Object Detection
  • Spatial Attention

Fingerprint

Dive into the research topics of 'MKSNet: Advanced Small Object Detection in Remote Sensing Imagery with Multi-Kernel and Dual Attention Mechanisms'. Together they form a unique fingerprint.

Cite this