Mix-Initiative Response Generation with Dynamic Prefix Tuning

Yuxiang Nie, Heyan Huang, Xian Ling Mao, Lizi Liao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Mixed initiative serves as one of the key factors in controlling conversation directions. For a speaker, responding passively or leading proactively would result in rather different responses. However, most dialogue systems focus on training a holistic response generation model without any distinction among different initiatives. It leads to the cross-contamination problem, where the model confuses different initiatives and generates inappropriate responses. Moreover, obtaining plenty of human annotations for initiative labels can be expensive. To address this issue, we propose a general mix-Initiative Dynamic Prefix Tuning framework (IDPT) to decouple different initiatives from the generation model, which learns initiative-aware prefixes in both supervised and unsupervised settings. Specifically, IDPT decouples initiative factors into different prefix parameters and uses the attention mechanism to adjust the selection of initiatives in guiding generation dynamically. The prefix parameters can be tuned towards accurate initiative prediction as well as mix-initiative response generation. Extensive experiments on two public dialogue datasets show that the proposed IDPT outperforms previous baselines on both automatic metrics and human evaluations. It also manages to generate appropriate responses with manipulated initiatives.

Original languageEnglish
Title of host publicationLong Papers
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages8740-8753
Number of pages14
ISBN (Electronic)9798891761148
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 - Hybrid, Mexico City, Mexico
Duration: 16 Jun 202421 Jun 2024

Publication series

NameProceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Volume1

Conference

Conference2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Country/TerritoryMexico
CityHybrid, Mexico City
Period16/06/2421/06/24

Fingerprint

Dive into the research topics of 'Mix-Initiative Response Generation with Dynamic Prefix Tuning'. Together they form a unique fingerprint.

Cite this