Mining periodic cliques in temporal networks

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Citations (Scopus)

Abstract

Periodicity is a frequently happening phenomenon for social interactions in temporal networks. Mining periodic communities are essential to understanding periodic group behaviors in temporal networks. Unfortunately, most previous studies for community mining in temporal networks ignore the periodic patterns of communities. In this paper, we study a problem of seeking periodic communities in a temporal network, where each edge is associated with a set of timestamps. We propose a novel model, called maximal σ-periodic k-clique, that represents a periodic community in temporal networks. Specifically, a maximal σ-periodic k-clique is a clique with size larger than k that appears at least σ times periodically in the temporal graph. We show that the problem of enumerating all those periodic cliques is NP-hard. To compute all of them efficiently, we first develop two effective graph reduction techniques to significantly prune the temporal graph. Then, we present an efficient enumeration algorithm to enumerate all maximal σ-periodic k-cliques in the reduced graph. The results of extensive experiments on five real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE 35th International Conference on Data Engineering, ICDE 2019
PublisherIEEE Computer Society
Pages1130-1141
Number of pages12
ISBN (Electronic)9781538674741
DOIs
Publication statusPublished - Apr 2019
Event35th IEEE International Conference on Data Engineering, ICDE 2019 - Macau, China
Duration: 8 Apr 201911 Apr 2019

Publication series

NameProceedings - International Conference on Data Engineering
Volume2019-April
ISSN (Print)1084-4627

Conference

Conference35th IEEE International Conference on Data Engineering, ICDE 2019
Country/TerritoryChina
CityMacau
Period8/04/1911/04/19

Keywords

  • Graph mining
  • Periodic clique
  • Periodic community
  • Social network
  • Temporal network

Fingerprint

Dive into the research topics of 'Mining periodic cliques in temporal networks'. Together they form a unique fingerprint.

Cite this