Abstract
Background: Stroke is a frequently-occurring disease and is a severe threat to human health. Objective: We aimed to explore the associations between stroke risk factors. Methods: Subjects who were aged 40 or above were requested to do surveys with a unified questionnaire as well as laboratory examinations. The Apriori algorithm was applied to find out the meaningful association rules. Selected association rules were divided into 8 groups by the number of former items. The rules with higher confidence degree in every group were viewed as the meaningful rules. Results: The training set used in association analysis consists of a total of 985,325 samples, with 15,835 stroke patients (1.65%) and 941,490 without stroke (98.35%). Based on the threshold we set for the Apriori algorithm, eight meaningful association rules were obtained between stroke and its high risk factors. While between high risk factors, there are 25 meaningful association rules. Conclusions: Based on the Apriori algorithm, meaningful association rules between the high risk factors of stroke were found, proving a feasible way to reduce the risk of stroke with early intervention.
Original language | English |
---|---|
Pages (from-to) | S197-S205 |
Journal | Technology and Health Care |
Volume | 25 |
Issue number | S1 |
DOIs | |
Publication status | Published - 21 Jul 2017 |
Event | 5th International Conference on Biomedical Engineering and Biotechnology, ICBEB 2016 - Hangzhou, China Duration: 1 Aug 2016 → 4 Aug 2016 |
Keywords
- Apriori algorithm
- Association rules
- Risk factors
- Stroke