TY - JOUR
T1 - MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension
AU - Qu, Yao
AU - Liu, Zhi Xue
AU - Zheng, Xiao Xu
AU - Wu, Sheng Nan
AU - An, Jun Qing
AU - Zou, Ming Hui
AU - Zhang, Zhi Ren
N1 - Publisher Copyright:
© 2024
PY - 2025/3
Y1 - 2025/3
N2 - Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension. Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition. Results: Sunitinib increased mitochondrial ROS accumulation, decreased oxygen consumption rate, ATP production, and mitochondrial calcium ([Ca2+]M) levels, and impaired endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) signaling in HUVECs. In addition, sunitinib also decreased mitochondrial membrane potential, elongated mitochondria, and reduced MAMs. Remarkably, these effects were reversed by an adeno-virus linker (Ad-linker) that reinforces MAMs. Engineered augmentation of MAMs using AAV-FLT1-linker significantly mitigated sunitinib-induced hypertension, by restoring endothelium-dependent relaxation in mice, highlighting the crucial role of MAMs in this process. Further analyses revealed that sunitinib enhanced Akt-mediated expression of mitofusin 2 (MFN2), causing mitochondrial elongation, and induced dephosphorylation of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) at residues Y1737/Y1738, reducing [Ca2+]M. Our study suggests that increased MFN2 expression and IP3R1 dephosphorylation are critical in sunitinib-induced MAMs reduction and [Ca2+]M homeostasis. Conclusion: Sunitinib induces mitochondrial dysfunction, Akt/MFN2-mediated decrease in MAMs and mitochondrial elongation, and IP3R1 dephosphorylation in endothelial cells, leading to endothelial dysfunction and hypertension. Our results provide the potential therapeutic targets for combating TKI-induced hypertension.
AB - Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension. Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition. Results: Sunitinib increased mitochondrial ROS accumulation, decreased oxygen consumption rate, ATP production, and mitochondrial calcium ([Ca2+]M) levels, and impaired endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) signaling in HUVECs. In addition, sunitinib also decreased mitochondrial membrane potential, elongated mitochondria, and reduced MAMs. Remarkably, these effects were reversed by an adeno-virus linker (Ad-linker) that reinforces MAMs. Engineered augmentation of MAMs using AAV-FLT1-linker significantly mitigated sunitinib-induced hypertension, by restoring endothelium-dependent relaxation in mice, highlighting the crucial role of MAMs in this process. Further analyses revealed that sunitinib enhanced Akt-mediated expression of mitofusin 2 (MFN2), causing mitochondrial elongation, and induced dephosphorylation of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) at residues Y1737/Y1738, reducing [Ca2+]M. Our study suggests that increased MFN2 expression and IP3R1 dephosphorylation are critical in sunitinib-induced MAMs reduction and [Ca2+]M homeostasis. Conclusion: Sunitinib induces mitochondrial dysfunction, Akt/MFN2-mediated decrease in MAMs and mitochondrial elongation, and IP3R1 dephosphorylation in endothelial cells, leading to endothelial dysfunction and hypertension. Our results provide the potential therapeutic targets for combating TKI-induced hypertension.
KW - Endothelium
KW - Hypertension
KW - IPR1
KW - MAMs
KW - MFN2
KW - Sunitinib
UR - http://www.scopus.com/inward/record.url?scp=85215819643&partnerID=8YFLogxK
U2 - 10.1016/j.yjmcc.2025.01.005
DO - 10.1016/j.yjmcc.2025.01.005
M3 - Article
C2 - 39848488
AN - SCOPUS:85215819643
SN - 0022-2828
VL - 200
SP - 45
EP - 60
JO - Journal of Molecular and Cellular Cardiology
JF - Journal of Molecular and Cellular Cardiology
ER -