Abstract
In response to the demand for small-size, high-precision, and real-time target distance measurement in platforms such as autonomous vehicles and drones, this paper investigates the multi-focal bionic compound eye (MFBCE) and its associated distance measurement algorithm. MFBCE was designed to integrate multiple lenses with different focal lengths and a CMOS array. Based on this system, a multi-eye distance measurement algorithm based on target detection was proposed. The algorithm derives the application of binocular distance measurement on cameras with different focal lengths, overcoming the limitation of traditional binocular algorithms that only work with identical cameras. By utilizing the multi-scale information obtained from multiple lenses with different focal lengths, the ranging accuracy of the MFBCE is improved. The telephoto lenses, with their narrow field of view, are beneficial for capturing detailed target information, while wide-angle lenses, with their larger field of view, are useful for acquiring information about the target’s environment. Experiments using the least squares method for ranging targets at 100 cm yielded a mean absolute error (MAE) of 1.05, approximately one-half of the binocular distance measurement algorithm. The proposed MFBCE demonstrates significant potential for applications in near-range obstacle avoidance, robotic grasping, and assisted driving.
Original language | English |
---|---|
Article number | 2708 |
Journal | Sensors |
Volume | 25 |
Issue number | 9 |
DOIs | |
Publication status | Published - May 2025 |
Externally published | Yes |
Keywords
- compound eye
- distance measurement
- multi-focal
- ranging