Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered

Chuyu Tang, Zhirong Liu*, Linlin Li*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

20 Citations (Scopus)

Abstract

Cardiovascular disease is one of the leading causes of death worldwide. Long-term and real-time monitoring of cardiovascular indicators is required to detect abnormalities and conduct early intervention in time. To this end, the development of flexible wearable/implantable sensors for real-time monitoring of various vital signs has aroused extensive interest among researchers. Among the different kinds of sensors, mechanical sensors can reflect the direct information of pressure fluctuations in the cardiovascular system with the advantages of high sensitivity and suitable flexibility. Herein, we first introduce the recent advances of four kinds of mechanical sensors for cardiovascular system monitoring, based on capacitive, piezoresistive, piezoelectric, and triboelectric principles. Then, the physio-mechanical mechanisms in the cardiovascular system and their monitoring are described, including pulse wave, blood pressure, heart rhythm, endocardial pressure, etc. Finally, we emphasize the importance of real-time physiological monitoring in the treatment of cardiovascular disease and discuss its challenges in clinical translation.

Original languageEnglish
Article number651
JournalBiosensors
Volume12
Issue number8
DOIs
Publication statusPublished - Aug 2022
Externally publishedYes

Keywords

  • blood pressure
  • cardiac output
  • cardiovascular disease
  • endocardial pressure
  • heart rhythm
  • mechanical sensors
  • pulse wave

Fingerprint

Dive into the research topics of 'Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered'. Together they form a unique fingerprint.

Cite this