TY - JOUR
T1 - Measurement of critical properties for the binary mixture of R744 (carbon dioxide) + R1233zd(E) (trans-1-chloro-3,3,3-trifluoro-1-propene)
AU - Yao, Xiaoyu
AU - Tang, Bo
AU - Wu, Jinxing
AU - Dong, Xueqiang
AU - Yang, Qingqing
AU - Kang, Huifang
AU - Shen, Jun
N1 - Publisher Copyright:
© 2025
PY - 2025/11
Y1 - 2025/11
N2 - Due to excellent environmental and thermophysical properties, CO2 has been used in many areas, such as commercial refrigeration, car air-conditioning, and heat pump drying systems in the past years. However, the low critical temperature and high critical pressure of carbon dioxide limit these applications. A potential approach to address these limitations is to create a mixture of carbon dioxide with other working fluids, such as hydrofluoroolefins or hydrochlorofluoroolefins, which exhibit lower critical temperatures and higher critical pressures. The R744 + R1233zd(E) mixture is a potential alternative working fluid. In this work, the critical properties of R744 + R1233zd(E) binary mixtures including molar composition, critical density, critical temperature, and critical pressure were experimentally measured by a variable volume system with metal bellows. The critical point is determined by judging the intensity of the critical opalescence and the reappearance of the gas-liquid phase interface. Without accounting for the fact that the purity of pure components falls short of 100 %, the combined expanded uncertainty of molar composition, critical temperature, critical density, and critical pressure is (with confidence of 0.95, k value of 2) 0.012, 50 mK, 0.6 %, and 21 kPa. The critical data obtained from the experiment are correlated with the simplified Tang et al.'s model by the Redlich-Kister approach. Both of the two fitting methods can reproduce the critical locus of the R744 + R1233zd(E) binary mixture with high precision.
AB - Due to excellent environmental and thermophysical properties, CO2 has been used in many areas, such as commercial refrigeration, car air-conditioning, and heat pump drying systems in the past years. However, the low critical temperature and high critical pressure of carbon dioxide limit these applications. A potential approach to address these limitations is to create a mixture of carbon dioxide with other working fluids, such as hydrofluoroolefins or hydrochlorofluoroolefins, which exhibit lower critical temperatures and higher critical pressures. The R744 + R1233zd(E) mixture is a potential alternative working fluid. In this work, the critical properties of R744 + R1233zd(E) binary mixtures including molar composition, critical density, critical temperature, and critical pressure were experimentally measured by a variable volume system with metal bellows. The critical point is determined by judging the intensity of the critical opalescence and the reappearance of the gas-liquid phase interface. Without accounting for the fact that the purity of pure components falls short of 100 %, the combined expanded uncertainty of molar composition, critical temperature, critical density, and critical pressure is (with confidence of 0.95, k value of 2) 0.012, 50 mK, 0.6 %, and 21 kPa. The critical data obtained from the experiment are correlated with the simplified Tang et al.'s model by the Redlich-Kister approach. Both of the two fitting methods can reproduce the critical locus of the R744 + R1233zd(E) binary mixture with high precision.
KW - Binary mixture
KW - Carbon dioxide
KW - Critical density
KW - Critical properties
KW - R1233zd(E)
KW - Variable-volume method
UR - http://www.scopus.com/inward/record.url?scp=105008666506&partnerID=8YFLogxK
U2 - 10.1016/j.jct.2025.107534
DO - 10.1016/j.jct.2025.107534
M3 - Article
AN - SCOPUS:105008666506
SN - 0021-9614
VL - 210
JO - Journal of Chemical Thermodynamics
JF - Journal of Chemical Thermodynamics
M1 - 107534
ER -