TY - JOUR
T1 - Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization
AU - Wang, Dawei
AU - Wu, Qirun
AU - Guo, Rui
AU - Lu, Chennan
AU - Niu, Meng
AU - Rao, Wei
N1 - Publisher Copyright:
© 2021 The Royal Society of Chemistry.
PY - 2021/5/21
Y1 - 2021/5/21
N2 - Transcatheter arterial chemoembolization (TACE) has become one of the preferred choices for advanced liver cancer patients. Current clinically used microsphere embolic agents, such as PVA, gelatin, and alginate microspheres, have limited therapeutic efficacy and lack the function of real-time imaging. In this work, we fabricated magnetic liquid metal nanoparticle (Fe@EGaIn NP) loaded calcium alginate (CA) microspheres (denoted as Fe@EGaIn/CA microspheres), which integrate CT/MR dual-modality imaging and photothermal/photodynamic functions of the Fe@EGaIn NP core, as well as embolization and drug-loading functions of CA microspheres. Namely, such nano-in-micro spheres can be used as fully flexible theranostic agents to achieve smart-chemoembolization. It has been confirmed by in vitro and in vivo experiments that Fe@EGaIn/CA microspheres have advantageous morphology, favorable biocompatibility, splendid versatility, and advanced embolic efficacy. Benefiting from these properties, excellent therapeutic efficiency was achieved with a tumor growth-inhibiting value of 100% in tumor-bearing rabbits. As a novel microsphere embolic agent with promising therapeutic efficacy and diagnostic capability, Fe@EGaIn/CA microspheres have shown potential applications in clinical transcatheter arterial chemoembolization. And the preparation strategy presented here provides a generalized paradigm for achieving multifunctional and fully flexible theranostics.
AB - Transcatheter arterial chemoembolization (TACE) has become one of the preferred choices for advanced liver cancer patients. Current clinically used microsphere embolic agents, such as PVA, gelatin, and alginate microspheres, have limited therapeutic efficacy and lack the function of real-time imaging. In this work, we fabricated magnetic liquid metal nanoparticle (Fe@EGaIn NP) loaded calcium alginate (CA) microspheres (denoted as Fe@EGaIn/CA microspheres), which integrate CT/MR dual-modality imaging and photothermal/photodynamic functions of the Fe@EGaIn NP core, as well as embolization and drug-loading functions of CA microspheres. Namely, such nano-in-micro spheres can be used as fully flexible theranostic agents to achieve smart-chemoembolization. It has been confirmed by in vitro and in vivo experiments that Fe@EGaIn/CA microspheres have advantageous morphology, favorable biocompatibility, splendid versatility, and advanced embolic efficacy. Benefiting from these properties, excellent therapeutic efficiency was achieved with a tumor growth-inhibiting value of 100% in tumor-bearing rabbits. As a novel microsphere embolic agent with promising therapeutic efficacy and diagnostic capability, Fe@EGaIn/CA microspheres have shown potential applications in clinical transcatheter arterial chemoembolization. And the preparation strategy presented here provides a generalized paradigm for achieving multifunctional and fully flexible theranostics.
UR - https://www.scopus.com/pages/publications/85106190348
U2 - 10.1039/d1nr01268a
DO - 10.1039/d1nr01268a
M3 - Article
C2 - 33960346
AN - SCOPUS:85106190348
SN - 2040-3364
VL - 13
SP - 8817
EP - 8836
JO - Nanoscale
JF - Nanoscale
IS - 19
ER -