Machine Learning Assisted MALDI Mass Spectrometry for Rapid Antimicrobial Resistance Prediction in Clinicals

Weibo Gao, Hang Li*, Jingxian Yang, Jinming Zhang, Rongxin Fu, Jiaxi Peng, Yechen Hu, Yitong Liu, Yingshi Wang, Shuang Li*, Shuailong Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Antimicrobial susceptibility testing (AST) plays a critical role in assessing the resistance of individual microbial isolates and determining appropriate antimicrobial therapeutics in a timely manner. However, conventional AST normally takes up to 72 h for obtaining the results. In healthcare facilities, the global distribution of vancomycin-resistant Enterococcus fecium (VRE) infections underscores the importance of rapidly determining VRE isolates. Here, we developed an integrated antimicrobial resistance (AMR) screening strategy by combining matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) with machine learning to rapidly predict VRE from clinical samples. Over 400 VRE and vancomycin-susceptible E. faecium (VSE) isolates were analyzed using MALDI-MS at different culture times, and a comprehensive dataset comprising 2388 mass spectra was generated. Algorithms including the support vector machine (SVM), SVM with L1-norm, logistic regression, and multilayer perceptron (MLP) were utilized to train the classification model. Validation on a panel of clinical samples (external patients) resulted in a prediction accuracy of 78.07%, 80.26%, 78.95%, and 80.54% for each algorithm, respectively, all with an AUROC above 0.80. Furthermore, a total of 33 mass regions were recognized as influential features and elucidated, contributing to the differences between VRE and VSE through the Shapley value and accuracy, while tandem mass spectrometry was employed to identify the specific peaks among them. Certain ribosomal proteins, such as A0A133N352 and R2Q455, were tentatively identified. Overall, the integration of machine learning with MALDI-MS has enabled the rapid determination of bacterial antibiotic resistance, greatly expediting the usage of appropriate antibiotics.

Original languageEnglish
Pages (from-to)13398-13409
Number of pages12
JournalAnalytical Chemistry
Volume96
Issue number33
DOIs
Publication statusPublished - 20 Aug 2024

Fingerprint

Dive into the research topics of 'Machine Learning Assisted MALDI Mass Spectrometry for Rapid Antimicrobial Resistance Prediction in Clinicals'. Together they form a unique fingerprint.

Cite this