Abstract
A solar radio spectrometer records solar radio radiation in the radio waveband. Such solar radio radiation spanning multiple frequency channels and over a short time period could provide a solar radio spectrum which is a two dimensional image. The vertical axis of a spectrum represents frequency channel and the horizontal axis signifies time. Intrinsically, time dependence exists between neighboring columns of a spectrum since solar radio radiation varies continuously over time. Thus, a spectrum can be treated as a time series consisting of all columns of a spectrum, while treating it as a general image would lose its time series property. A recurrent neural network (RNN) is designed for time series analysis. It can explore the correlation and interaction between neighboring inputs of a time series by augmenting a loop in a network. This papermakes the first attempt to utilize an RNN, specifically long short-termmemory (LSTM), for solar radio spectrum classification. LSTM can mine well the context of a time series to acquire more information beyond a non-time series model. As such, as demonstrated by our experimental results, LSTM can learn a better representation of a spectrum, and thus contribute better classification.
Original language | English |
---|---|
Article number | 135 |
Journal | Research in Astronomy and Astrophysics |
Volume | 19 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2019 |
Externally published | Yes |
Keywords
- classification
- deep learning
- long short-term memory (LSTM)
- solar burst detection
- solar radio spectrum