Low multilinear rank approximation of tensors and application in missing traffic data

Huachun Tan*, Jianshuai Feng, Zhengdong Chen, Fan Yang, Wuhong Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

The problem of missing data in multiway arrays (i.e., tensors) is common in many fields such as bibliographic data analysis, image processing, and computer vision. We consider the problems of approximating a tensor by another tensor with low multilinear rank in the presence of missing data and possibly reconstructing it (i.e., tensor completion). In this paper, we propose a weighted Tucker model which models only the known elements for capturing the latent structure of the data and reconstructing the missing elements. To treat the nonuniqueness of the proposed weighted Tucker model, a novel gradient descent algorithm based on a Grassmann manifold, which is termed Tucker weighted optimization (Tucker-Wopt), is proposed for guaranteeing the global convergence to a local minimum of the problem. Based on extensive experiments, Tucker-Wopt is shown to successfully reconstruct tensors with noise and up to 95% missing data. Furthermore, the experiments on traffic flow volume data demonstrate the usefulness of our algorithm on real-world application.

Original languageEnglish
Article number157597
JournalAdvances in Mechanical Engineering
Volume2014
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Low multilinear rank approximation of tensors and application in missing traffic data'. Together they form a unique fingerprint.

Cite this