Location Privacy-Preserving Task Recommendation with Geometric Range Query in Mobile Crowdsensing

Chuan Zhang, Liehuang Zhu*, Chang Xu, Jianbing Ni, Cheng Huang, Xuemin Shen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

In mobile crowdsensing, location-based task recommendation requires each data requester to submit a task-related geometric range to crowdsensing service providers such that they can match suitable workers within this range. Generally, a trusted server (i.e., database owner) should be deployed to protect location privacy during the process, which is not desirable in practice. In this paper, we propose the location privacy-preserving task recommendation (PPTR) schemes with geometric range query in mobile crowdsensing without the trusted database owner. Specifically, we first propose a PPTR scheme with linear search complexity, named PPTR-L, based on a two-server model. By leveraging techniques of polynomial fitting and randomizable matrix multiplication, PPTR-L enables the service provider to find the workers located in the data requester's arbitrary geometric query range without disclosing the sensitive location privacy. To further improve query efficiency, we design a novel data structure for task recommendation and propose PPTR-F to achieve faster-than-linear search complexity. Through security analysis, it is shown that our schemes can protect the confidentiality of workers' locations and data requesters' queries. Extensive experiments are performed to demonstrate that our schemes can achieve high computational efficiency in terms of geometric range query.

Original languageEnglish
Pages (from-to)4410-4425
Number of pages16
JournalIEEE Transactions on Mobile Computing
Volume21
Issue number12
DOIs
Publication statusPublished - 1 Dec 2022

Keywords

  • Task recommendation
  • geometric range query
  • location
  • mobile crowdsensing
  • privacy

Fingerprint

Dive into the research topics of 'Location Privacy-Preserving Task Recommendation with Geometric Range Query in Mobile Crowdsensing'. Together they form a unique fingerprint.

Cite this