TY - GEN
T1 - LMHaze
T2 - 6th ACM International Conference on Multimedia in Asia, MMAsia 2024
AU - Zhang, Ruikun
AU - Yang, Hao
AU - Yang, Yan
AU - Fu, Ying
AU - Pan, Liyuan
N1 - Publisher Copyright:
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2024/12/28
Y1 - 2024/12/28
N2 - Image dehazing has drawn a significant attention in recent years. Learning-based methods usually require paired hazy and corresponding ground truth (haze-free) images for training. However, it is difficult to collect real-world image pairs, which prevents developments of existing methods. Although several works partially alleviate this issue by using synthetic datasets or small-scale real datasets. The haze intensity distribution bias and scene homogeneity in existing datasets limit the generalization ability of these methods, particularly when encountering images with previously unseen haze intensities. In this work, we present LMHaze, a large-scale, high-quality real-world dataset. LMHaze comprises paired hazy and haze-free images captured in diverse indoor and outdoor environments, spanning multiple scenarios and haze intensities. It contains over 5K high-resolution image pairs, surpassing the size of the biggest existing real-world dehazing dataset by over 25 times. Meanwhile, to better handle images with different haze intensities, we propose a mixture-of-experts model based on Mamba (MoE-Mamba) for dehazing, which dynamically adjusts the model parameters according to the haze intensity. Moreover, with our proposed dataset, we conduct a new large multimodal model (LMM)-based benchmark study to simulate human perception for evaluating dehazed images. Experiments demonstrate that LMHaze dataset improves the dehazing performance in real scenarios and our dehazing method provides better results compared to state-of-the-art methods. The dataset and code are available at our project page.
AB - Image dehazing has drawn a significant attention in recent years. Learning-based methods usually require paired hazy and corresponding ground truth (haze-free) images for training. However, it is difficult to collect real-world image pairs, which prevents developments of existing methods. Although several works partially alleviate this issue by using synthetic datasets or small-scale real datasets. The haze intensity distribution bias and scene homogeneity in existing datasets limit the generalization ability of these methods, particularly when encountering images with previously unseen haze intensities. In this work, we present LMHaze, a large-scale, high-quality real-world dataset. LMHaze comprises paired hazy and haze-free images captured in diverse indoor and outdoor environments, spanning multiple scenarios and haze intensities. It contains over 5K high-resolution image pairs, surpassing the size of the biggest existing real-world dehazing dataset by over 25 times. Meanwhile, to better handle images with different haze intensities, we propose a mixture-of-experts model based on Mamba (MoE-Mamba) for dehazing, which dynamically adjusts the model parameters according to the haze intensity. Moreover, with our proposed dataset, we conduct a new large multimodal model (LMM)-based benchmark study to simulate human perception for evaluating dehazed images. Experiments demonstrate that LMHaze dataset improves the dehazing performance in real scenarios and our dehazing method provides better results compared to state-of-the-art methods. The dataset and code are available at our project page.
KW - Dehazing
KW - large-scale
KW - real-world dataset
KW - state space model
UR - http://www.scopus.com/inward/record.url?scp=85216254248&partnerID=8YFLogxK
U2 - 10.1145/3696409.3700178
DO - 10.1145/3696409.3700178
M3 - Conference contribution
AN - SCOPUS:85216254248
T3 - Proceedings of the 6th ACM International Conference on Multimedia in Asia, MMAsia 2024
BT - Proceedings of the 6th ACM International Conference on Multimedia in Asia, MMAsia 2024
PB - Association for Computing Machinery, Inc
Y2 - 3 December 2024 through 6 December 2024
ER -