TY - JOUR
T1 - Learning to Generate Parameters of ConvNets for Unseen Image Data
AU - Wang, Shiye
AU - Feng, Kaituo
AU - Li, Changsheng
AU - Yuan, Ye
AU - Wang, Guoren
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Typical Convolutional Neural Networks (ConvNets) depend heavily on large amounts of image data and resort to an iterative optimization algorithm (e.g., SGD or Adam) to learn network parameters, making training very time- and resource-intensive. In this paper, we propose a new training paradigm and formulate the parameter learning of ConvNets into a prediction task: considering that there exist correlations between image datasets and their corresponding optimal network parameters of a given ConvNet, we explore if we can learn a hyper-mapping between them to capture the relations, such that we can directly predict the parameters of the network for an image dataset never seen during the training phase. To do this, we put forward a new hypernetwork-based model, called PudNet, which intends to learn a mapping between datasets and their corresponding network parameters, then predicts parameters for unseen data with only a single forward propagation. Moreover, our model benefits from a series of adaptive hyper-recurrent units sharing weights to capture the dependencies of parameters among different network layers. Extensive experiments demonstrate that our proposed method achieves good efficacy for unseen image datasets in two kinds of settings: Intra-dataset prediction and Inter-dataset prediction. Our PudNet can also well scale up to large-scale datasets, e.g., ImageNet-1K. It takes 8,967 GPU seconds to train ResNet-18 on the ImageNet-1K using GC from scratch and obtain a top-5 accuracy of 44.65%. However, our PudNet costs only 3.89 GPU seconds to predict the network parameters of ResNet-18 achieving comparable performance (44.92%), more than 2,300 times faster than the traditional training paradigm.
AB - Typical Convolutional Neural Networks (ConvNets) depend heavily on large amounts of image data and resort to an iterative optimization algorithm (e.g., SGD or Adam) to learn network parameters, making training very time- and resource-intensive. In this paper, we propose a new training paradigm and formulate the parameter learning of ConvNets into a prediction task: considering that there exist correlations between image datasets and their corresponding optimal network parameters of a given ConvNet, we explore if we can learn a hyper-mapping between them to capture the relations, such that we can directly predict the parameters of the network for an image dataset never seen during the training phase. To do this, we put forward a new hypernetwork-based model, called PudNet, which intends to learn a mapping between datasets and their corresponding network parameters, then predicts parameters for unseen data with only a single forward propagation. Moreover, our model benefits from a series of adaptive hyper-recurrent units sharing weights to capture the dependencies of parameters among different network layers. Extensive experiments demonstrate that our proposed method achieves good efficacy for unseen image datasets in two kinds of settings: Intra-dataset prediction and Inter-dataset prediction. Our PudNet can also well scale up to large-scale datasets, e.g., ImageNet-1K. It takes 8,967 GPU seconds to train ResNet-18 on the ImageNet-1K using GC from scratch and obtain a top-5 accuracy of 44.65%. However, our PudNet costs only 3.89 GPU seconds to predict the network parameters of ResNet-18 achieving comparable performance (44.92%), more than 2,300 times faster than the traditional training paradigm.
KW - adaptive hyper-recurrent units
KW - hypernetwork
KW - Parameter generation
UR - http://www.scopus.com/inward/record.url?scp=85201753777&partnerID=8YFLogxK
U2 - 10.1109/TIP.2024.3445731
DO - 10.1109/TIP.2024.3445731
M3 - Article
C2 - 39178089
AN - SCOPUS:85201753777
SN - 1057-7149
VL - 33
SP - 5577
EP - 5592
JO - IEEE Transactions on Image Processing
JF - IEEE Transactions on Image Processing
ER -