Learning Super-Resolution Reconstruction for High Temporal Resolution Spike Stream

Xijie Xiang, Lin Zhu, Jianing Li, Yixuan Wang, Tiejun Huang, Yonghong Tian*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Spike camera is a new type of bio-inspired vision sensor, each pixel of which perceives the brightness of the scene independently, and finally outputs 3-dimensional spatiotemporal spike streams. To bridge the spike camera and traditional frame-based vision, there is some works to reconstruct spike streams into regular images. However, the low spatial resolution ( $400\times 250$ ) of the spike camera limits the quality of the reconstructed images. Thus, it is meaningful to explore a super-resolution reconstruction for spike streams. In this paper, we propose an end-to-end network to reconstruct high-resolution images from low-resolution spike streams. To utilize more spatiotemporal features of spike streams, our network adopts a multi-level features learning mechanism, including intra-stream feature extraction by spike encoder, inter-stream dependencies extraction based on optical flow module, and joint features learning via spike-based iterative projection. Experimental results demonstrate that our network is superior to the combination of state-of-the-art intensity image reconstruction methods and super-resolution networks on simulated and real datasets.

Original languageEnglish
Pages (from-to)16-29
Number of pages14
JournalIEEE Transactions on Circuits and Systems for Video Technology
Volume33
Issue number1
DOIs
Publication statusPublished - 1 Jan 2023
Externally publishedYes

Keywords

  • Spike camera
  • spike encoder
  • spike reconstruction
  • spike-based iterative projection
  • super-resolution

Fingerprint

Dive into the research topics of 'Learning Super-Resolution Reconstruction for High Temporal Resolution Spike Stream'. Together they form a unique fingerprint.

Cite this