TY - GEN
T1 - Learning sparse confidence-weighted classifier on very high dimensional data
AU - Tan, Mingkui
AU - Yan, Yan
AU - Wang, Li
AU - Van Den Hengel, Anton
AU - Tsang, Ivor W.
AU - Shi, Qinfeng
N1 - Publisher Copyright:
© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - Confidence-weighted (CW) learning is a successful online learning paradigm which maintains a Gaussian distribution over classifier weights and adopts a covariance matrix to represent the uncertainties of the weight vectors. However, there are two deficiencies in existing full CW learning paradigms, these being the sensitivity to irrelevant features, and the poor scalability to high dimensional data due to the maintenance of the covariance structure. In this paper, we begin by presenting an online-batch CW learning scheme, and then present a novel paradigm to learn sparse CW classifiers. The proposed paradigm essentially identifies feature groups and naturally builds a block diagonal covariance structure, making it very suitable for CW learning over very high-dimensional data. Extensive experimental results demonstrate the superior performance of the proposed methods over state-of-the-art counterparts on classification and feature selection tasks.
AB - Confidence-weighted (CW) learning is a successful online learning paradigm which maintains a Gaussian distribution over classifier weights and adopts a covariance matrix to represent the uncertainties of the weight vectors. However, there are two deficiencies in existing full CW learning paradigms, these being the sensitivity to irrelevant features, and the poor scalability to high dimensional data due to the maintenance of the covariance structure. In this paper, we begin by presenting an online-batch CW learning scheme, and then present a novel paradigm to learn sparse CW classifiers. The proposed paradigm essentially identifies feature groups and naturally builds a block diagonal covariance structure, making it very suitable for CW learning over very high-dimensional data. Extensive experimental results demonstrate the superior performance of the proposed methods over state-of-the-art counterparts on classification and feature selection tasks.
UR - http://www.scopus.com/inward/record.url?scp=85007275562&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85007275562
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 2080
EP - 2086
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -