TY - GEN
T1 - LCP-Fusion
T2 - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
AU - Wang, Jiahui
AU - Deng, Yinan
AU - Yang, Yi
AU - Yue, Yufeng
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Recently the dense Simultaneous Localization and Mapping (SLAM) based on neural implicit representation has shown impressive progress in hole filling and high-fidelity mapping. Nevertheless, existing methods either heavily rely on known scene bounds or suffer inconsistent reconstruction due to drift in potential loop-closure regions, or both, which can be attributed to the inflexible representation and lack of local constraints. In this paper, we present LCP-Fusion, a neural implicit SLAM system with enhanced local constraints and computable prior, which takes the sparse voxel octree structure containing feature grids and SDF priors as hybrid scene representation, enabling the scalability and robustness during mapping and tracking. To enhance the local constraints, we propose a novel sliding window selection strategy based on visual overlap to address the loop-closure, and a practical warping loss to constrain relative poses. Moreover, we estimate SDF priors as coarse initialization for implicit features, which brings additional explicit constraints and robustness, especially when a light but efficient adaptive early ending is adopted. Experiments demonstrate that our method achieve better localization accuracy and reconstruction consistency than existing RGB-D implicit SLAM, especially in challenging real scenes (ScanNet) as well as self-captured scenes with unknown scene bounds. The code is available at https://github.com/laliwang/LCP-Fusion.
AB - Recently the dense Simultaneous Localization and Mapping (SLAM) based on neural implicit representation has shown impressive progress in hole filling and high-fidelity mapping. Nevertheless, existing methods either heavily rely on known scene bounds or suffer inconsistent reconstruction due to drift in potential loop-closure regions, or both, which can be attributed to the inflexible representation and lack of local constraints. In this paper, we present LCP-Fusion, a neural implicit SLAM system with enhanced local constraints and computable prior, which takes the sparse voxel octree structure containing feature grids and SDF priors as hybrid scene representation, enabling the scalability and robustness during mapping and tracking. To enhance the local constraints, we propose a novel sliding window selection strategy based on visual overlap to address the loop-closure, and a practical warping loss to constrain relative poses. Moreover, we estimate SDF priors as coarse initialization for implicit features, which brings additional explicit constraints and robustness, especially when a light but efficient adaptive early ending is adopted. Experiments demonstrate that our method achieve better localization accuracy and reconstruction consistency than existing RGB-D implicit SLAM, especially in challenging real scenes (ScanNet) as well as self-captured scenes with unknown scene bounds. The code is available at https://github.com/laliwang/LCP-Fusion.
UR - http://www.scopus.com/inward/record.url?scp=85216468063&partnerID=8YFLogxK
U2 - 10.1109/IROS58592.2024.10802626
DO - 10.1109/IROS58592.2024.10802626
M3 - Conference contribution
AN - SCOPUS:85216468063
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 12263
EP - 12270
BT - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 14 October 2024 through 18 October 2024
ER -