Jitter control for optical payload on satellites

Zhang Yao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The jitter control technique by using dual-stage vibration isolation system for optical payload on satellites is discussed, and it is applied on a satellite to improve the imaging performance. The dual-stage vibration isolation system includes two vibration isolation platforms. The first vibration isolation platform is at the actuator disturbance source, like control moment gyroscopes (CMGs). The second one is installed between the top of the satellite bus and the optical payload. In this paper, the first step constructs a general satellite dynamic model including a dual-stage vibration isolation system, a cluster of CMGs and solar arrays by Newton-Euler method and Kane equations, while the validity of this dynamic model is verified by a computer software program. The transmissibility matrices from CMGs motion to satellite motion and that to optical payload motion are then obtained according to the simplified satellite dynamic model. The parameters constraint conditions of the vibration isolation platform for the CMGs are described, with its influence on the attitude control system analyzed. The third part selects the reasonable parameters of the dual-stage vibration isolation system and those of the flexible solar arrays. Then the frequency domain characteristics of the dual-stage vibration isolation system are presented. Finally, using these reasonable parameters, the performance of this vibration isolation system on the satellite is testified by numerical simulations.

Original languageEnglish
Article number04014005
JournalJournal of Aerospace Engineering
Volume27
Issue number4
DOIs
Publication statusPublished - 1 Jul 2014

Keywords

  • Attitude control
  • Control moment gryoscope
  • Dual-stage vibration isolation system
  • High resolution sensing remote satellite
  • Jitter control
  • Large space telescope
  • Optical payload

Fingerprint

Dive into the research topics of 'Jitter control for optical payload on satellites'. Together they form a unique fingerprint.

Cite this