TY - JOUR
T1 - IRSTD-YOLO
T2 - An Improved YOLO Framework for Infrared Small Target Detection
AU - Tang, Yuan
AU - Xu, Tingfa
AU - Qin, Haolin
AU - Li, Jianan
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2025
Y1 - 2025
N2 - Detecting small targets in infrared images, especially in low-contrast and complex backgrounds, remains challenging. To tackle this, we propose infrared small target detection YOLO (IRSTD-YOLO), a novel detection network. The edge and feature extraction (EFE) module enhances feature representation by integrating a SobelConv branch and a 2DConv branch. The SobelConv branch applies Sobel operators to extract gradient information, enhancing edge contrast and making small targets more distinguishable from the background. Unlike standard convolutions, which process all features uniformly, this edge-aware operation emphasizes structural information crucial for detecting small infrared targets. The 2DConv branch captures spatial context, complementing the edge features to create a more comprehensive representation. To further refine detection, we introduce the infrared small target enhancement (IRSTE) module, addressing the limitations of conventional feature pyramid networks. Instead of merely adding a shallow detection head, IRSTE processes and enhances shallow-layer features, which are rich in small target information, and fuses them with deeper features. By leveraging a multibranch strategy that integrates local, global, and large-scale contexts, IRSTE enhances small target representation and detection robustness, particularly in low-contrast environments where traditional networks often fail. Experimental results show that IRSTD-YOLO achieves an mAP@0.5:0.95 of 36.7% on the InfraredUAV dataset and 51.6% on the AntiUAV310 dataset, outperforming YOLOv11-s by 4.4% and 4.2%, respectively.
AB - Detecting small targets in infrared images, especially in low-contrast and complex backgrounds, remains challenging. To tackle this, we propose infrared small target detection YOLO (IRSTD-YOLO), a novel detection network. The edge and feature extraction (EFE) module enhances feature representation by integrating a SobelConv branch and a 2DConv branch. The SobelConv branch applies Sobel operators to extract gradient information, enhancing edge contrast and making small targets more distinguishable from the background. Unlike standard convolutions, which process all features uniformly, this edge-aware operation emphasizes structural information crucial for detecting small infrared targets. The 2DConv branch captures spatial context, complementing the edge features to create a more comprehensive representation. To further refine detection, we introduce the infrared small target enhancement (IRSTE) module, addressing the limitations of conventional feature pyramid networks. Instead of merely adding a shallow detection head, IRSTE processes and enhances shallow-layer features, which are rich in small target information, and fuses them with deeper features. By leveraging a multibranch strategy that integrates local, global, and large-scale contexts, IRSTE enhances small target representation and detection robustness, particularly in low-contrast environments where traditional networks often fail. Experimental results show that IRSTD-YOLO achieves an mAP@0.5:0.95 of 36.7% on the InfraredUAV dataset and 51.6% on the AntiUAV310 dataset, outperforming YOLOv11-s by 4.4% and 4.2%, respectively.
KW - Infrared small target detection
KW - target enhancement
UR - http://www.scopus.com/inward/record.url?scp=105002839135&partnerID=8YFLogxK
U2 - 10.1109/LGRS.2025.3562096
DO - 10.1109/LGRS.2025.3562096
M3 - Article
AN - SCOPUS:105002839135
SN - 1545-598X
VL - 22
JO - IEEE Geoscience and Remote Sensing Letters
JF - IEEE Geoscience and Remote Sensing Letters
M1 - 7001405
ER -