Investigation on dynamic response of thin spherical shells impacted by flat-nose projectile based on a novel damage model

Tianbao Ma, Yi Shen, Jianguo Ning, Jianqiao Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Thin-shell structures are widely used in various engineering applications. It is essential to investigate the impact resistance of thin-shell structures, to provide theoretical support for engineering applications. Numerous impact tests have been conducted on thin spherical shells using ballistic guns. The effects of the impact velocity and shell thickness on the deformation and fracture of thin spherical shells are summarized. Moreover, a novel damage model based on statistic damage mechanics is proposed to better predict dynamic responses of thin shells impacted by projectiles. Considering that fracture surfaces are formed by void evolution and are affected by the stress states, the damage level is defined as the ratio of the statistical cross-sectional area of the voids to the cross-sectional area of the representative elements. Utilizing statistical methods, the incorporation of continuous void nucleation, ellipsoidal void growth, and the acceleration of dynamic void evolution are introduced into the novel damage model. Subsequently, numerical investigations of the dynamic response of spherical shells under impact are conducted based on the proposed damage model. The numerical results are consistent with the experimental results in terms of the depression deformations and strain signals. The effects of shell thickness and double-layer structures on the dynamic response of spherical shells are investigated via numerical simulations considering the novel damage model in detail. The results demonstrate that the proposed model can accurately predict the dynamic response of spherical shells impacted by flat-nose projectiles, thus serving as a valuable reference for engineering design.

Original languageEnglish
Article number105090
JournalInternational Journal of Impact Engineering
Volume194
DOIs
Publication statusPublished - Dec 2024

Keywords

  • Aluminum spherical shell
  • Damage evolution
  • Dynamic void evolution
  • Impact load

Fingerprint

Dive into the research topics of 'Investigation on dynamic response of thin spherical shells impacted by flat-nose projectile based on a novel damage model'. Together they form a unique fingerprint.

Cite this