Interpretable Motion Planner for Urban Driving via Hierarchical Imitation Learning

Bikun Wang, Zhipeng Wang, Chenhao Zhu, Zhiqiang Zhang, Zhichen Wang, Penghong Lin, Jingchu Liu, Qian Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Learning-based approaches have achieved remarkable performance in the domain of autonomous driving. Leveraging the impressive ability of neural networks and large amounts of human driving data, complex patterns and rules of driving behavior can be encoded as a model to benefit the autonomous driving system. Besides, an increasing number of data-driven works have been studied in the decision-making and motion planning module. However, the reliability and the stability of the neural network is still full of uncertainty. In this paper, we introduce a hierarchical planning architecture including a high-level grid-based behavior planner and a low-level trajectory planner, which is highly interpretable and controllable. As the high-level planner is responsible for finding a consistent route, the low-level planner generates a feasible trajectory. We evaluate our method both in closed-loop simulation and real world driving, and demonstrate the neural network planner has outstanding performance in complex urban autonomous driving scenarios.

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1691-1696
Number of pages6
ISBN (Electronic)9781665491907
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'Interpretable Motion Planner for Urban Driving via Hierarchical Imitation Learning'. Together they form a unique fingerprint.

Cite this