Abstract
Designers are usually facing a problem of finding information from a huge amount of unstructured textual documents in order to prepare for a decision to be made. The major challenge is that knowledge embedded in the textual documents are difficult to search at a semantic level and therefore not ready to support decisions in a timely manner. To address this challenge, in this paper we propose a knowledge-graph-based method for integrating and navigating decision-related knowledge in engineering design. The presented method is based on a meta-model of decision knowledge graph (mDKG) that is grounded in the compromise Decision Support Problem (cDSP) construct which is used by designers as a means to formulate design decisions linguistically and mathematically. Based on the mDKG, we propose a procedure for automatically converting word-based cDSPs to knowledge graph through natural language processing, and a procedure for rapidly and accurately navigating decision-related knowledge through divergence and convergence processes. The knowledge-graph-based method is verified using the textual data from the supply chain design domain. Results show that our method has better performance than the conventional keyword-based searching method in terms of both effectiveness and efficiency in finding the target knowledge.
Original language | English |
---|---|
Article number | 101366 |
Journal | Advanced Engineering Informatics |
Volume | 50 |
DOIs | |
Publication status | Published - Oct 2021 |
Keywords
- Decision support
- Design
- Knowledge graph
- Navigation
- Searching