Integrated Opto-Synaptic IGZO Transistors for Image Recognition Fabricated at Room Temperature

Shu Ming Qi, Jia Cheng Li, Yang Hui Xia, Zi Chun Liu, De Dai, Ting Lu Song, Hui Xia Yang, Yuan Xiao Ma*, Ye Liang Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

At room temperature, high-κ HfLaO is adopted as the gate dielectric to fabricate amorphous InGaZnO (a-IGZO) optical synaptic thin-film transistors (TFTs), for which plasma treatments are conducted on the HfLaO dielectric in O2 and a-IGZO in Ar, respectively, namely, OPT/APT-TFTs. Consequently, high-performance a-IGZO TFTs are obtained with a high carrier mobility of 20.8 cm2/V·s, a high Ion/Ioff ratio of 3.2 × 106, and a small subthreshold swing (SS) of 0.25 V/dec. As compared to the pristine TFTs, the photocurrent of the OPT/APT-TFTs under a 365 nm ultraviolet (UV) light is significantly raised three times up to 1.4 μA. Meanwhile, the current decay percentage after irradiation removal is reduced from 98% down to 36% within 60 s, indicating an enhanced persistent-photoconductivity (PPC) effect. Accordingly, various optical synaptic plasticities are obtained based on which a simulated neuronal network with a high 93.22% accuracy is achieved to recognize MNIST handwritten digits. Moreover, both neurotransmitter and neuromodulator behaviors are concurrently emulated in a single device through exploiting the native three-terminal structure of the TFT. Importantly, an artificial visual nervous system is successfully constructed by integrating the a-IGZO optoelectronic TFTs for image recognition.

Original languageEnglish
Pages (from-to)1760-1770
Number of pages11
JournalACS Photonics
Volume12
Issue number4
DOIs
Publication statusPublished - 16 Apr 2025
Externally publishedYes

Keywords

  • a-IGZO TFTs
  • high-κ dielectric
  • image recognition
  • optical synaptic plasticities
  • persistent-photoconductivity effect

Cite this