TY - JOUR
T1 - Infrared image enhancement algorithm based on detail enhancement guided image filtering
AU - Tan, Ailing
AU - Liao, Hongping
AU - Zhang, Bozhi
AU - Gao, Meijing
AU - Li, Shiyu
AU - Bai, Yang
AU - Liu, Zehao
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023/12
Y1 - 2023/12
N2 - Because of the unique imaging mechanism of infrared (IR) sensors, IR images commonly suffer from blurred edge details, low contrast, and poor signal-to-noise ratio. A new method is proposed in this paper to enhance IR image details so that the enhanced images can effectively inhibit image noise and improve image contrast while enhancing image details. First, for the traditional guided image filter (GIF) applied to IR image enhancement is prone to halo artifacts, this paper proposes a detail enhancement guided filter (DGIF). It mainly adds the constructed edge perception and detail regulation factors to the cost function of the GIF. Then, according to the visual characteristics of human eyes, this paper applies the detail regulation factor to the detail layer enhancement, which solves the problem of amplifying image noise using fixed gain coefficient enhancement. Finally, the enhanced detail layer is directly fused with the base layer so that the enhanced image has rich detail information. We first compare the DGIF with four guided image filters and then compare the algorithm of this paper with three traditional IR image enhancement algorithms and two IR image enhancement algorithms based on the GIF on 20 IR images. The experimental results show that the DGIF has better edge-preserving and smoothing characteristics than the four guided image filters. The mean values of quantitative evaluation of information entropy, average gradient, edge intensity, figure definition, and root-mean-square contrast of the enhanced images, respectively, achieved about 0.23%, 3.4%, 4.3%, 2.1%, and 0.17% improvement over the optimal parameter. It shows that the algorithm in this paper can effectively suppress the image noise in the detail layer while enhancing the detail information, improving the image contrast, and having a better visual effect.
AB - Because of the unique imaging mechanism of infrared (IR) sensors, IR images commonly suffer from blurred edge details, low contrast, and poor signal-to-noise ratio. A new method is proposed in this paper to enhance IR image details so that the enhanced images can effectively inhibit image noise and improve image contrast while enhancing image details. First, for the traditional guided image filter (GIF) applied to IR image enhancement is prone to halo artifacts, this paper proposes a detail enhancement guided filter (DGIF). It mainly adds the constructed edge perception and detail regulation factors to the cost function of the GIF. Then, according to the visual characteristics of human eyes, this paper applies the detail regulation factor to the detail layer enhancement, which solves the problem of amplifying image noise using fixed gain coefficient enhancement. Finally, the enhanced detail layer is directly fused with the base layer so that the enhanced image has rich detail information. We first compare the DGIF with four guided image filters and then compare the algorithm of this paper with three traditional IR image enhancement algorithms and two IR image enhancement algorithms based on the GIF on 20 IR images. The experimental results show that the DGIF has better edge-preserving and smoothing characteristics than the four guided image filters. The mean values of quantitative evaluation of information entropy, average gradient, edge intensity, figure definition, and root-mean-square contrast of the enhanced images, respectively, achieved about 0.23%, 3.4%, 4.3%, 2.1%, and 0.17% improvement over the optimal parameter. It shows that the algorithm in this paper can effectively suppress the image noise in the detail layer while enhancing the detail information, improving the image contrast, and having a better visual effect.
KW - Detail enhancement
KW - Detail regulation factor
KW - Edge perception factor
KW - Guided image filtering
KW - Infrared image
UR - http://www.scopus.com/inward/record.url?scp=85143907512&partnerID=8YFLogxK
U2 - 10.1007/s00371-022-02741-6
DO - 10.1007/s00371-022-02741-6
M3 - Article
AN - SCOPUS:85143907512
SN - 0178-2789
VL - 39
SP - 6491
EP - 6502
JO - Visual Computer
JF - Visual Computer
IS - 12
ER -