Abstract
Early-stage detection of tumors helps to improve patient survival rate. In this work, we demonstrate a novel discrimination method to diagnose the gastrointestinal stromal tumor (GIST) and its healthy formalin fixed paraffin embedded (FFPE) tissues by combining chemometric algorithms with laser-induced breakdown spectroscopy (LIBS). Chemometric methods which include partial least square discrimination analysis (PLS-DA), k-nearest neighbor (k-NN) and support vector machine (SVM) were used to build the discrimination models. The comparison of PLS-DA, k-NN and SVM classifiers shows an increase in accuracy from 94.44% to 100%. The comparison of LIBS signal between the healthy and infected tissues shows an enhancement of calcium lines which is a signature of the presence of GIST in the FFPE tissues. Our results may provide a complementary method for the rapid detection of tumors for the successful treatment of patients.
| Original language | English |
|---|---|
| Pages (from-to) | 26-38 |
| Number of pages | 13 |
| Journal | Biomedical Optics Express |
| Volume | 13 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - 2021 |