Abstract
In situ synchrotron-based high-energy X-ray diffraction (HE-XRD) technique was employed to investigate the mechanical behaviors and microstructural evolution of face-centered cubic (FCC) Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys (HEAs) during tensile deformation. Fe20Co30Cr30Ni20 HEA has a good combination of strength (ultimate tensile strength of 864 ± 35 MPa) and ductility (elongation of 0.627 ± 0.021). The HE-XRD investigation reveals that Fe20Co30Cr30Ni20 HEA has the transformation-induced plasticity (TRIP) effect, which starts at a critical stress of ~555 MPa. Transmission electron microscopy confirmed this deformation-induced new phase is hexagonal-close-packed structured ε-martensite, which follows an orientation relationship of {111}γ//(0001)ε, and ⟨110⟩γ//[112¯0]ε with the FCC γ matrix. The observation of deformation twins in the deformed samples of the two studied HEAs proves that twinning-induced plasticity (TWIP) effect occurs in both HEAs. The combination of TRIP and TWIP effects lead to the high strength, large ductility and improved strain hardening behavior of Fe20Co30Cr30Ni20 HEA.
| Original language | English |
|---|---|
| Article number | 139936 |
| Journal | Materials Science and Engineering: A |
| Volume | 795 |
| DOIs | |
| Publication status | Published - 23 Sept 2020 |
Keywords
- High entropy alloys
- High-energy X-ray diffraction
- Transformation-induced plasticity
- Twinning-induced plasticity