TY - GEN
T1 - In-Context Compositional Generalization for Large Vision-Language Models
AU - Li, Chuanhao
AU - Jing, Chenchen
AU - Li, Zhen
AU - Zhai, Mingliang
AU - Wu, Yuwei
AU - Jia, Yunde
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - Recent work has revealed that in-context learning for large language models exhibits compositional generalization capacity, which can be enhanced by selecting in-context demonstrations similar to test cases to provide contextual information. However, how to exhibit in-context compositional generalization (ICCG) of large vision-language models (LVLMs) is non-trival. Due to the inherent asymmetry between visual and linguistic modalities, ICCG in LVLMs faces an inevitable challenge-redundant information on the visual modality. The redundant information affects in-context learning from two aspects: (1) Similarity calculation may be dominated by redundant information, resulting in sub-optimal demonstration selection. (2) Redundant information in in-context demonstrations brings misleading contextual information to in-context learning. To alleviate these problems, we propose a demonstration selection method to achieve ICCG for LVLMs, by considering two key factors of demonstrations: content and structure, from a multimodal perspective. Specifically, we design a diversity-coverage-based matching score to select demonstrations with maximum coverage, and avoid selecting demonstrations with redundant information via their content redundancy and structural complexity. We build a GQA-ICCG dataset to simulate the ICCG setting, and conduct experiments on GQA-ICCG and the VQA v2 dataset. Experimental results demonstrate the effectiveness of our method.
AB - Recent work has revealed that in-context learning for large language models exhibits compositional generalization capacity, which can be enhanced by selecting in-context demonstrations similar to test cases to provide contextual information. However, how to exhibit in-context compositional generalization (ICCG) of large vision-language models (LVLMs) is non-trival. Due to the inherent asymmetry between visual and linguistic modalities, ICCG in LVLMs faces an inevitable challenge-redundant information on the visual modality. The redundant information affects in-context learning from two aspects: (1) Similarity calculation may be dominated by redundant information, resulting in sub-optimal demonstration selection. (2) Redundant information in in-context demonstrations brings misleading contextual information to in-context learning. To alleviate these problems, we propose a demonstration selection method to achieve ICCG for LVLMs, by considering two key factors of demonstrations: content and structure, from a multimodal perspective. Specifically, we design a diversity-coverage-based matching score to select demonstrations with maximum coverage, and avoid selecting demonstrations with redundant information via their content redundancy and structural complexity. We build a GQA-ICCG dataset to simulate the ICCG setting, and conduct experiments on GQA-ICCG and the VQA v2 dataset. Experimental results demonstrate the effectiveness of our method.
UR - http://www.scopus.com/inward/record.url?scp=85215459993&partnerID=8YFLogxK
U2 - 10.18653/v1/2024.emnlp-main.996
DO - 10.18653/v1/2024.emnlp-main.996
M3 - Conference contribution
AN - SCOPUS:85215459993
T3 - EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
SP - 17954
EP - 17966
BT - EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
A2 - Al-Onaizan, Yaser
A2 - Bansal, Mohit
A2 - Chen, Yun-Nung
PB - Association for Computational Linguistics (ACL)
T2 - 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Y2 - 12 November 2024 through 16 November 2024
ER -