Improving the Reliability and Accuracy of Ammonia Quantification in Electro- and Photochemical Synthesis

Guo Yi Duan, Yuan Ren, Yang Tang, Yan Zhi Sun, Yong Mei Chen*, Ping Yu Wan, Xiao Jin Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

The reliable and accurate quantification of ammonia in electrochemical and photochemical experiments has been a technical challenge owing to the extremely low concentration of generated ammonia, interference from trace amounts of cations and organic compounds, and ammonia contamination from various sources. As a result, overestimation and significant errors may happen in many research works. Herein, accuracy and precision of ion chromatography (IC) are evaluated at different pH; excellent performance with a low detection limit (<2 μg L−1) under acidic and neutral conditions is found, whereas the linearity is unsatisfactory in the low NH4+ concentration range (0–100 μg L−1) under alkaline conditions. High concentrations of Li+ and Na+ are difficult to separate from NH4+ in conventional IC, but this can be solved by employing a high-exchange-capacity column or gradient elution. The interference effects of 14 common transition metal cations and 6 common organic compounds on the quantification of ammonium with low-level concentration (500 μg L−1) using IC are systematically investigated, and the results demonstrate good robustness. The overestimation caused by ammonia contamination from reagent water, surroundings, and even the analytical grade of inorganic and organic reagents are confirmed and the results indicate the necessity to prepare and test fresh electrolyte solutions before each experiment, owing to the high sensitivity of acidic and neutral solutions to ammonia contamination from the surroundings. The ammonization of a Nafion membrane during experiments and the underestimation in quantification are also discussed. Finally, a reliable level of synthesized ammonia is identified and some recommendations are presented to improve the reliability and accuracy of ammonia quantification.

Original languageEnglish
Pages (from-to)88-96
Number of pages9
JournalChemSusChem
Volume13
Issue number1
DOIs
Publication statusPublished - 9 Jan 2020
Externally publishedYes

Keywords

  • ammonia detection
  • electrocatalysis
  • ion chromatography
  • nitrogen fixation
  • photocatalysis

Fingerprint

Dive into the research topics of 'Improving the Reliability and Accuracy of Ammonia Quantification in Electro- and Photochemical Synthesis'. Together they form a unique fingerprint.

Cite this