High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics

Saisai Li, Yuanzhi Jiang, Jian Xu, Di Wang, Zijin Ding, Tong Zhu, Bin Chen, Yingguo Yang, Mingyang Wei, Renjun Guo, Yi Hou, Yu Chen, Changjiu Sun, Keyu Wei, Saif M.H. Qaid, Haizhou Lu, Hairen Tan, Dawei Di, Jun Chen, Michael GrätzelEdward H. Sargent*, Mingjian Yuan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)

Abstract

α-FA1−xCsxPbI3 is a promising absorbent material for efficient and stable perovskite solar cells (PSCs)1,2. However, the most efficient α-FA1−xCsxPbI3 PSCs require the inclusion of the additive methylammonium chloride3,4, which generates volatile organic residues (methylammonium) that limit device stability at elevated temperatures5. Previously, the highest certified power-conversion efficiency of α-FA1−xCsxPbI3 PSCs without methylammonium chloride was only approximately 24% (refs. 6,7), and these PSCs have yet to exhibit any stability advantages. Here we identify interfacial contact loss caused by the accumulation of Cs+ in conventional α-FA1−xCsxPbI3 PSCs, which deteriorates device performance and stability. Through in situ grazing-incidence wide-angle X-ray scattering analysis and density functional theory calculations, we demonstrate an intermediate-phase-assisted crystallization pathway enabled by acetate surface coordination to fabricate high-quality α-FA1−xCsxPbI3 films, without using the methylammonium additive. We herein report a certified stabilized power output efficiency of 25.94% and a reverse-scanning power-conversion efficiency of 26.64% for α-FA1−xCsxPbI3 PSCs. Moreover, the devices exhibited negligible contact losses and enhanced operational stability. They retained over 95% of their initial power-conversion efficiency after operating for over 2,000 h at the maximum power point under 1 sun, 85 °C and 60% relative humidity (ISOS-L-3).

Original languageEnglish
Pages (from-to)82-88
Number of pages7
JournalNature
Volume635
Issue number8037
DOIs
Publication statusPublished - 7 Nov 2024
Externally publishedYes

Fingerprint

Dive into the research topics of 'High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics'. Together they form a unique fingerprint.

Cite this