TY - GEN
T1 - Hierarchical Feature Generating Network for Zero-Shot Learning by Knowledge Graph
AU - Zhang, Yi
AU - Li, Kan
AU - Niu, Xin
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Zero-Shot Learning (ZSL) has received much attention and has achieved great success. Most of existing ZSL methods transfer knowledge learned from seen classes to unseen classes by utilizing shared side information, such as, annotated attribute vectors, word embeddings, etc. Recently, the most popular method in ZSL is utilizing generative models to do semantic augmentation for unseen classes. However, these models generate features in one step which will lead to the domain shift problem and don’t leverage rich shared information between seen and unseen classes in the knowledge graph. Thus we construct a hierarchical generative model that synthesizes features for unseen classes layer by layer instead of one-step like previous ZSL work. Experimental results on various datasets show that our method can significantly improve the performance compared with the state-of-the-art ZSL models.
AB - Zero-Shot Learning (ZSL) has received much attention and has achieved great success. Most of existing ZSL methods transfer knowledge learned from seen classes to unseen classes by utilizing shared side information, such as, annotated attribute vectors, word embeddings, etc. Recently, the most popular method in ZSL is utilizing generative models to do semantic augmentation for unseen classes. However, these models generate features in one step which will lead to the domain shift problem and don’t leverage rich shared information between seen and unseen classes in the knowledge graph. Thus we construct a hierarchical generative model that synthesizes features for unseen classes layer by layer instead of one-step like previous ZSL work. Experimental results on various datasets show that our method can significantly improve the performance compared with the state-of-the-art ZSL models.
KW - Hierarchical generative model
KW - Knowledge graph
KW - Zero-shot learning
UR - http://www.scopus.com/inward/record.url?scp=85112503541&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-80119-9_55
DO - 10.1007/978-3-030-80119-9_55
M3 - Conference contribution
AN - SCOPUS:85112503541
SN - 9783030801182
T3 - Lecture Notes in Networks and Systems
SP - 846
EP - 856
BT - Intelligent Computing - Proceedings of the 2021 Computing Conference
A2 - Arai, Kohei
PB - Springer Science and Business Media Deutschland GmbH
T2 - Computing Conference, 2021
Y2 - 15 July 2021 through 16 July 2021
ER -