Heterogeneous graph attention networks for semi-supervised short text classification

Linmei Hu, Tianchi Yang, Chuan Shi*, Houye Ji, Xiaoli Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

334 Citations (Scopus)

Abstract

Short text classification has found rich and critical applications in news and tweet tagging to help users find relevant information. Due to lack of labeled training data in many practical use cases, there is a pressing need for studying semi-supervised short text classification. Most existing studies focus on long texts and achieve unsatisfactory performance on short texts due to the sparsity and limited labeled data. In this paper, we propose a novel heterogeneous graph neural network based method for semi-supervised short text classification, leveraging full advantage of few labeled data and large unlabeled data through information propagation along the graph. In particular, we first present a flexible HIN (heterogeneous information network) framework for modeling the short texts, which can integrate any type of additional information as well as capture their relations to address the semantic sparsity. Then, we propose Heterogeneous Graph ATtention networks (HGAT) to embed the HIN for short text classification based on a dual-level attention mechanism, including node-level and type-level attentions. The attention mechanism can learn the importance of different neighboring nodes as well as the importance of different node (information) types to a current node. Extensive experimental results have demonstrated that our proposed model outperforms state-of-the-art methods across six benchmark datasets significantly.

Original languageEnglish
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics
Pages4821-4830
Number of pages10
ISBN (Electronic)9781950737901
Publication statusPublished - 2019
Externally publishedYes
Event2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: 3 Nov 20197 Nov 2019

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

Conference2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Country/TerritoryChina
CityHong Kong
Period3/11/197/11/19

Fingerprint

Dive into the research topics of 'Heterogeneous graph attention networks for semi-supervised short text classification'. Together they form a unique fingerprint.

Cite this