Halogen-Bonding Nanoarchitectonics in Supramolecular Plasticizers for Breaking the Trade-Off between Ion Transport and Mechanical Strength of Polymer Electrolytes for High-Voltage Li-Metal Batteries

Jieqing Shen, Wensheng Tian, Shuohan Liu, Hui Pan*, Cheng Yang, Hengdao Quan*, Shenmin Zhu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The low ionic conductivity of poly(ethylene oxide) (PEO)-based polymer electrolytes at room temperature impedes their practical applications. The addition of a plasticizer into polymer electrolytes could significantly promote ion transport while inevitably decreasing their mechanical strength. Herein, we report a supramolecular plasticizer (SMP) to break the trade-off effect between ionic conductivity and mechanical properties in PEO-based polymer electrolytes. Accordingly, the SMP is constructed by tetraethylene glycol dimethyl ether (G4) and SbF3 through halogen bonds. The SMP-plasticized PEO electrolyte (PEO/SMP) presents a simultaneously enhanced ionic conductivity of 2.4 × 10-4 S cm-1 (25 °C) and a high mechanical strength of 8.1 MPa, compared to those of pristine PEO-based electrolytes. Benefiting from the halogen bonds between G4 and SbF3, the Li-O coordination in PEO/SMP is evidently weakened, and thus rapid Li+ transport is achieved. Furthermore, the PEO/SMP electrolyte possesses a wide electrochemical stability window of 4.5 V and, importantly, derives an inorganic-rich SEI with a low interfacial resistance on a lithium metal surface. By using PEO/SMP, the lithium-metal battery with the LiNi0.5Co0.2Mn0.3O2 cathode exhibits a good rate and long-term cycling performance with a capacity retention of 75.3% (500 cycles). This work offers a rational guideline for the design of polymer electrolytes suitable for high-performance lithium-metal batteries.

Original languageEnglish
Pages (from-to)30716-30727
Number of pages12
JournalACS Nano
Volume18
Issue number44
DOIs
Publication statusPublished - 5 Nov 2024
Externally publishedYes

Keywords

  • halogen bonds
  • high-voltage lithium-metal batteries
  • inorganic-rich SEI
  • mechanical property
  • polymer electrolyte

Cite this