Abstract
A green chemical shear-thickening polishing (GC-STP) method was studied to improve the surface precision and processing efficiency of monocrystalline silicon. A novel green shear-thickening polishing slurry composed of silica nanoparticles, alumina abrasive, sorbitol, plant ash, polyethylene glycol, and deionized water was formulated. The monocrystalline silicon was roughly ground using a diamond polishing slurry and then the GC-STP process. The material removal rate (MRR) during GC-STP was 4.568 μmh−1. The material removal mechanism during the processing of monocrystalline silicon via GC-STP was studied using elemental energy spectroscopy and FTIR spectroscopy. After 4 h of the GC-STP process, the surface roughness (Ra) of the monocrystalline silicon wafer was reduced to 0.278 nm, and an excellent monocrystalline silicon surface quality was obtained. This study shows that GC-STP is a green, efficient, and low-damage polishing method for monocrystalline silicon.
Original language | English |
---|---|
Article number | 1866 |
Journal | Nanomaterials |
Volume | 14 |
Issue number | 23 |
DOIs | |
Publication status | Published - Dec 2024 |
Keywords
- green chemical shear-thickening polishing
- low damage
- material removal
- monocrystalline silicon